Learning to Rank in theory and practice
From Gradient Boosting to Neural Networks and Unbiased Learning

Claudio Lucchese
Franco Maria Nardini
Ca’ Foscari University, Venice, Italy,
ISTI-CNR, Pisa, Italy
claudio.lucchese@unive.it
f.nardini@isti.cnr.it

Rama Kumar Pasumarthi
Sebastian Bruch
Michael Bendersky
Xuanhui Wang
Google AI
{ramakumar,bruch,bemike,
xuanhui}@google.com

Harrie Oosterhuis
Rolf Jagerman
Maarten de Rijke
University of Amsterdam
{oosterhuis,rolf.jagerman,derijke}@uva.nl

ABSTRACT
This tutorial aims to weave together diverse strands of modern learning-to-rank (LtR) research, and present them in a unified full-day tutorial. First, we will introduce the fundamentals of LtR, and an overview of its various sub-fields. Then, we will discuss some recent advances in gradient boosting methods such as LambdaMART by focusing on their efficiency/effectiveness trade-offs and optimizations. We will then present TF-Ranking, a new open source TensorFlow package for neural LtR models, and how it can be used for modeling sparse textual features. We will conclude the tutorial by covering unbiased LtR – a new research field aiming at learning from biased implicit user feedback.

The tutorial will consist of three two-hour sessions, each focusing on one of the topics described above. It will provide a mix of theoretical and hands-on sessions, and should benefit both academics interested in learning more about the current state-of-the-art in LtR, as well as practitioners who want to use LtR techniques in their applications.

KEYWORDS
Learning To Rank, Efficiency/Effectiveness trade-offs in Learning to Rank, Neural Learning to Rank, Unbiased Learning to Rank.

ACM Reference format:
DOI:

1 DESCRIPTION AND SCHEDULE
This tutorial will be presented as a full-day tutorial at SIGIR 2019, Paris, France. The tutorial is organized in three sessions lasting two hours each.

Session I: Efficiency/Effectiveness Trade-offs
• Introduction to LtR and aims of the tutorial. (30 min.)
 – Introduction on LtR [39], its historical evolution and main results [34, 48, 73] and the illustration of the goals of the tutorial.

• Efficiency in Learning to Rank (60 min.)
 Detailed analysis of state-of-the-art solutions for improving the efficiency of LtR models along different dimensions.
 – Feature analysis
 • by removing features to speed up both training and model evaluation [28].
 • by introducing meta-features for list-aware query-document representation [43].
 • by reducing feature evaluation cost [74, 75].
 – Pruning forests of regression trees
 • by using drop-out from artificial neural networks [67].
 • by removing trees at learning time [41].
 • by removing trees at post-learning [40, 42].
 – Optimizing efficiency within the model learning process
 • by jointly optimizing efficiency and effectiveness in linear ranking models [68].
 • by employing oblivious trees for boosting efficiency and generalization power [60].
 • by introducing a novel cascade ranking model that simultaneously improve ranking effectiveness and retrieval efficiency. [69].
 • by learning temporally constrained ranking functions [70].
 • by learning efficient approximations of tree-based models through artificial neural networks [19].
 – Approximate score computation and dynamic trade-off prediction:

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the owner/authors.
SIGIR ’19, Paris, France.
© 2019 Copyright held by the owner/authors. …$15.00
DOI:
by using optimization strategies to allow short-circuiting score computations in additive LTR models [11].
- by dynamically predicting the result set size to optimize the performance of the entire retrieval system [20].
- by learning how to best balance feature importance and feature costs in multi-stage cascade ranking models [16].
- by learning an end-to-end cascade of rankers using backpropagation [26].

- Efficient traversal of tree-based LTR models and efficient approximation:
 - by employing standard approaches: Conditional Operators, If-Then-Else [22, 44].
 - by using vectorized traversal of trees [8].
 - by employing novel parallel traversal strategies: QuickScorer (CPU-based, SIMD, Multi-thread, and GPU versions) [22, 38, 44, 45], and RapidScorer [76] for compressed representations of trees when employing large numbers of leaves.
 - by defining cache-conscious optimization strategies for tree-based models [33, 64].

Hands-on Session (30 min.)
We show how to develop state-of-the-art strategies to gain a larger than 18X. In daMART, we will show how to reduce its runtime cost by a factor 275X.

- Publicly Available Datasets ([15, 22, 56]) and implementations (TensorFlow Ranking [55], XGBoost [17], LightGBM [2], CatBoost [3], QuickRank [12], jForests [27], RankLib [1], pGBRT [66])
- In-depth analysis of several state-of-the-art strategies for scoring documents with forests of regression trees. We share the source code of several state-of-the-art solutions, including QuickScorer [44] (under NDA), and discuss CPU and cache profiling. We show how these algorithms allow to reduce the scoring time of a ranking model by a factor up to 275X.

Session III: Unbiased Learning to Rank

Introduction to Learning from User Interactions (10 min)
Limitations of the supervised approach
The limitations of using annotated datasets [15, 39, 58, 71].
Learning from user interactions
User behavior indicates true user preferences [34, 57] but contain biases [78], i.e., position bias and selection bias.

Counterfactual Learning to Rank (50 min)
Counterfactual evaluation
Inverse Propensity Scoring (IPS) and how it produces an unbiased estimate of online metrics.

Propensity-weighted Learning to Rank (LTR)
The recent propensity-weighted LTR methods [9, 37, 71].

Estimating position bias
Position bias estimation techniques [72], both online estimation [72] and offline estimation [4, 14].

Practical considerations
Some of the practical difficulties and their solutions, such as propensity overfitting [36, 62] and high variance [61].

Online Learning to Rank (45 min)

Online evaluation
Interleaving and how it deals with position bias [32, 35].

Dueling Bandit Gradient Descent
Describe Dueling Bandit Gradient Descent (DBGD) the method that defined a decade of Online Learning to Rank (OLTR) algorithms.

5 min – Extensions of DBGD and their limitations
The extensions of DBGD do not provide long-term improvements in performance [30, 31, 50, 53, 59, 80].

Regret bounds of DBGD and their problems
Empirical [51, 59] and theoretical problems [52] with DBGD.

Pairwise Differentiable Gradient Descent
Latest OLTR method [51] that does not rely on DBGD.

Comparison of PDGD and DBGD
An empirical and theoretical comparison between Pairwise Differentiable Gradient Descent (PDGD) and DBGD [51, 52].

Conclusion (15 min)

Summarize and contrast the two methodologies
Reflect on the two approaches to unbiased LTR, contrast their properties and applicability.

Future directions for unbiased learning to rank
We finish by describing the promising directions that future LTR work could investigate.

2 SUPPORTING MATERIALS
You can find more materials related to this tutorial on our website http://ltr-tutorial-sigir19.isti.cnr.it/.