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ABSTRACT
This tutorial aims to weave together diverse strands of modern
learning-to-rank (LtR) research, and present them in a uni�ed full-
day tutorial. First, we will introduce the fundamentals of LtR, and
an overview of its various sub-�elds. Then, we will discuss some re-
cent advances in gradient boosting methods such as LambdaMART
by focusing on their e�ciency/e�ectiveness trade-o�s and opti-
mizations. We will then present TF-Ranking, a new open source
TensorFlow package for neural LtR models, and how it can be used
for modeling sparse textual features. We will conclude the tutorial
by covering unbiased LtR – a new research �eld aiming at learning
from biased implicit user feedback.

The tutorial will consist of three two-hour sessions, each focusing
on one of the topics described above. It will provide a mix of theo-
retical and hands-on sessions, and should bene�t both academics
interested in learning more about the current state-of-the-art in
LtR, as well as practitioners who want to use LtR techniques in
their applications.
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1 DESCRIPTION AND SCHEDULE
This tutorial will be presented as a full-day tutorial at SIGIR 2019,
Paris, France. The tutorial is organized in three sessions lasting two
hours each.
Session I: E�iciency/E�ectiveness Trade-o�s
• Introduction to LtR and aims of the tutorial. (30 min.)

– Introduction on LtR [39], its historical evolution and main
results [34, 48, 73] and the illustration of the goals of the
tutorial.

– The role of LtR in modern Web search engines. Review of
the main approaches of LtR: focus on tree-based models
[10, 10, 25, 46] and arti�cial neural networks [5, 19, 23, 29,
54, 63, 79]. Discussion of the quality vs. e�ciency trade-o�
in the use of LtR models [13, 46, 65]. Brief description of
multi-stage ranking architectures [16, 21, 47, 77].

• E�ciency in Learning to Rank (60 min.)
Detailed analysis of state-of-the-art solutions for improving the
e�ciency of LtR models along di�erent dimensions.
– Feature analysis:

∗ by removing features to speed up both training and
model evaluation [28].

∗ by introducing meta-features for list-aware query-
document representation [43].

∗ by reducing feature evaluation cost [74, 75].
– Pruning forests of regression trees:

∗ by using drop-out from arti�cial neural networks [67].
∗ by removing trees at learning time [41].
∗ by removing trees at post-learning [40, 42].

– Optimizing e�ciency within the model learning process:
∗ by jointly optimizing e�ciency and e�ectiveness in

linear ranking models [68].
∗ by learning compact and fast trees [7].
∗ by employing oblivious trees for boosting e�ciency

and generalization power [60].
∗ by introducing a novel cascade ranking model that

simultaneously improve ranking e�ectiveness and
retrieval e�ciency. [69].

∗ by learning temporally constrained ranking functions
[70].

∗ by learning e�cient approximations of tree-based
models through arti�cial neural networks [19].

– Approximate score computation and dynamic trade-o� pre-
diction:
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∗ by using optimization strategies to allow short-circuiting
score computations in additive LtR models [11].

∗ by dynamically predicting the result set size to opti-
mize the performance of the entire retrieval system
[20].

∗ by learning how to best balance feature importance
and feature costs in multi-stage cascade ranking mod-
els [16].

∗ by learning an end-to-end cascade of rankers using
backpropagation [26].

– E�cient traversal of tree-based LtR models and e�cient ap-
proximation:

∗ by employing standard approaches: Conditional Op-
erators, If-Then-Else [22, 44].

∗ by using vectorized traversal of trees [8].
∗ by employing novel parallel traversal strategies: QuickScorer

(CPU-based, SIMD, Multi-thread, and GPU versions)
[22, 38, 44, 45], and RapidScorer [76] for compressed
representations of trees when employing large num-
bers of leafs.

∗ by de�ning cache-conscious optimization strategies
for tree-based models [33, 64].

• Hands-on Session (30 min.)
We show how to develop state-of-the-art strategies to gain a
more e�cient ranking model without losing e�ectiveness. Given
a model learnt with a state-of-the-art algorithm such as Lamb-
daMART, we will show how to reduce its runtime cost by a factor
larger than 18×.
– Publicly Available Datasets ([15, 22, 56]) and implementa-

tions (TensorFlow Ranking [55], XGBoost [17], LightGBM[2],
CatBoost[3], QuickRank [12], jForests [27], RankLib[1], pGBRT[66])

– In-depth analysis of several state-of-the-art strategies for
scoring documents with forests of regression trees. We share
the source code of several state-of-the-art solutions, includ-
ing QuickScorer [44] (under NDA), and discuss CPU and
cache pro�ling. We show how these algorithms allow to
reduce the scoring time of a ranking model by a factor up
to 275×.

Session II: Neural Learning to Rank using TensorFlow
• Session 1 (30 mins)

– Introduction to Neural Ranking
Neural learning-to-rank primer [49]
Groupwise scoring methods [6]

– Introduction to TensorFlow Ranking
TensorFlow and Estimator framework overview

[18]
TensorFlow Ranking: components and APIs [55]

• Co�ee Break
• Session 2 (90 mins)

– Introduction to data formats and datasets
– Colaboratory demo setup
– Demo: TensorFlow Ranking for Search using the MSLR-

Web30k dataset
Dealing with numerical features
Exploring various losses, scoring functions and met-

rics

– Demo: TensorFlow Ranking for Passage Retrieval us-
ing the MSMARCO dataset

Learning embeddings to model sparse textual fea-
tures

Incorporating pre-trained embeddings, e.g., BERT
[24]

– Discussion and questions.

Session III: Unbiased Learning to Rank

• Introduction to Learning from User Interactions (10 min)
Limitations of the supervised approach
The limitations of using annotated datasets [15, 39, 58, 71].
Learning from user interactions
User behavior indicates true user preferences [34, 57] but
contain biases [78], i.e. position bias and selection bias.

• Counterfactual Learning to Rank (50 min)
Counterfactual evaluation
Inverse Propensity Scoring (IPS) and how it produces an
unbiased estimate of online metrics.
Propensity-weighted Learning to Rank (LTR)
The recent propensity-weighted LTR methods [9, 37, 71].
Estimating position bias
Position bias estimation techniques [72], both online esti-
mation [72] and o�ine estimation [4, 14].
Practical considerations
Some of the practical di�culties and their solutions, such
as propensity over�tting [36, 62] and high variance [61].

• Online Learning to Rank (45 min)
Online evaluation
Interleaving and how it deals with position bias [32, 35].
Dueling Bandit Gradient Descent
Describe Dueling Bandit Gradient Descent (DBGD) the method
that de�ned a decade of Online Learning to Rank (OLTR)
algorithms.
5 min – Extensions of DBGD and their limitations
The extensions of DBGD do not provide long-term improve-
ments in performance. [30, 31, 50, 53, 59, 80].
Regret bounds of DBGD and their problems
Empirical [51, 59] and theoretical problems [52] with DBGD.
Pairwise Di�erentiable Gradient Descent
Latest OLTR method [51] that does not rely on DBGD.
Comparison of PDGD and DBGD
An empirical and theoretical comparison between Pairwise
Di�erentiable Gradient Descent (PDGD) and DBGD [51, 52].

• Conclusion (15 min)
Summarize and contrast the two methodologies
Re�ect on the two approaches to unbiased LTR, contrast
their properties and applicability.
Future directions for unbiased learning to rank
We �nish by describing the promising directions that future
LTR work could investigate.

2 SUPPORTING MATERIALS
You can �nd more materials related to this tutorial on our website
http://ltr-tutorial-sigir19.isti.cnr.it/.

http://ltr-tutorial-sigir19.isti.cnr.it/
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