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The Ranking Problem

Ranking is at the core of several IR Tasks:

• Document Ranking in Web Search

• Ads Ranking in Web Advertising

• Query suggestion & completion

• Product Recommendation

• Song Recommendation

• …
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Agenda
Session I: Efficiency/Effectiveness Trade-offs
(Claudio Lucchese and Franco Maria Nardini)

• Theory: Background, sources of cost, learning algorithms, Fast Scoring
• Practice: Training models, Pruning strategies, Efficient scoring

• At the end of the day you’ll be able to train a high quality ranking model, and to exploit 
SoA tools and techniques to reduce its computational cost up to 18x !

Session II: Neural Learning to Rank using TensorFlow
(Rama Kumar Pasumarthi, Sebastian Bruch, Michael Bendersky and Xuanhui Wang)

• Theory: The fundamental building blocks of neural learning-to-rank models in TF-
Ranking: losses, metrics and scoring functions

• Practice: Hands-on training of a basic ranking model with sparse textual features
• At the end of the end of the day, you should be able to train a basic TF-Ranking model in 

Google Colab, and understand simple model customizations

Session III: Unbiased Learning to Rank
(Harrie Oosterhuis, Maarten de Rijke and Rolf Jagerman)

• Theory: Biases in User Interactions, Counterfactual and Online Methods
• Practice: Learning and Evaluating from User Interactions

• After this part you should understand and be able to choose between unbiased LTR 
methodologies
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Effectiveness vs. Efficiency

Definition:
Given a query q and a set of objects/documents D,
to rank D so as to maximize users’ satisfaction Q.
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[KDF+13] Kohavi, R., Deng, A., Frasca, B., Walker, T., Xu, Y., & Pohlmann, N. (2013, August). Online controlled experiments at large scale. In Proceedings of the 19th ACM SIGKDD international 
conference on Knowledge discovery and data mining (pp. 1168-1176). ACM.

Goal #1: Effectiveness
• Maximize Q !
• but how to measure Q?

Goal #2: Efficiency
• Make sure the ranking process is 

feasible and not too expensive
• In Bing ... “every 100msec improves revenue 

by 0.6%. Every millisecond counts.”[KDF+13]



Document Representations and Ranking

Document Representations

A document is a multi-set of words

A document may have fields, it can be split into 
zones, it can be enriched with external text data 
(e.g., anchors)

Additional information may be useful, e.g., In-Links, 
Out-Links, PageRank, # clicks, social links, etc.

Hundred signals in public LtR Datasets
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Ranking Functions

Term-weighting [SJ72]

Vector Space Model [SB88]

BM25 [JWR00], BM25f [RZT04]

Language Modeling [PC98] 

Linear Combination of features [MC07]

How to combine hundreds of signals?

[SJ72] Karen Sparck Jones. A statistical interpretation of term specificity and its application in retrieval. Journal of documentation, 28(1):11–21, 1972.
[SB88] Gerard Salton and Christopher Buckley. Term-weighting approaches in automatic text retrieval. Information processing & management, 24(5):513–523, 1988.
[JWR00] K Sparck Jones, Steve Walker, and Stephen E. Robertson. A probabilistic model of information retrieval: development and comparative experiments. Information processing & management, 36(6):809–840, 2000
[RZT04] Stephen Robertson, Hugo Zaragoza, and Michael Taylor. Simple bm25 extension to multiple weighted fields. In Proceedings of the thirteenth ACM international conference on Information and knowledge 
management, pages 42–49. ACM, 2004.
[PC98] Jay M Ponte and W Bruce Croft. A language modeling approach to information retrieval. In Proceedings of the 21st annual international ACM SIGIR conference on Research and development in information 
retrieval, pages 275–281. ACM, 1998.
[MC07] Donald Metzler and W Bruce Croft. Linear feature-based models for information retrieval. Information Retrieval, 10(3):257–274, 2007.



Ranking as a Supervised Learning Task
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Ranking as a Supervised Learning Task
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Query/Document 
Representation

Useful signals
• Link Analysis [H+00]
• Term proximity [RS03]
• Query classification [BSD10]
• Query intent mining [JLN16, LOP+13]
• Finding entities documents [MW08]

and in queries [BOM15]
• Document recency [DZK+10]
• Distributed representations of 

words and their compositionality 
[MSC+13]
• Convolutional neural networks 

[SHG+14]
• ….
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• Explicit Feedback
• Thousands of Search Quality 

Raters
• Absolute vs. Relative 

Judgments [CBCD08]

• Minimize annotation cost
• Active Learning [LCZ+10]

• Deep versus Shallow labelling [YR09]

• Implicit Feedback
• Clicks/query chains [JGP+05, Joa02, RJ05]

• Unbiased learning-to-rank [JSS17]

Relevance Labels 
Genera8on

d

q y



Evaluation Measures for Ranking
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Evaluation Measures for Ranking

Many are in the form:

• (N)DCG [JK00]:
• RBP [MZ08]:
• ERR [CMZG09]:

Do they match User satisfaction ?
• ERR correlates better with user satisfaction (clicks and editorials) [CMZG09]

• Results Interleaving to compare two rankings [CJRY12]
• “major revisions of the web search rankers [Bing] ... The differences between these rankers involve 

changes of over half a percentage point, in absolute terms, of NDCG”
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Gain(d) = 2y � 1 Discount(r) =
1

log(r + 1)

Q@k =
X

ranks r=1...k

Gain(dr) · Discount(r)

[JK00] Kalervo J arvelin and Jaana Kekalainen. IR evaluation methods for retrieving highly relevant documents. In Proceedings of the 23rd annual international ACM SIGIR conference on 
Research and development in information retrieval, pages 41–48. ACM, 2000.
[MZ08] Alistair Moffat and Justin Zobel. Rank-biased precision for measurement of retrieval effectiveness. ACM Transactions on Information Systems (TOIS), 27(1):2, 2008.
[CMZG09] Olivier Chapelle, Donald Metlzer, Ya Zhang, and Pierre Grinspan. Expected reciprocal rank for graded relevance. In Proceedings of the 18th ACM conference on Information and 
knowledge management, pages 621–630. ACM, 2009.
[CJRY12] Olivier Chapelle, Thorsten Joachims, Filip Radlinski, and Yisong Yue. Large-scale validation and analysis of interleaved search evaluation. ACM Transactions on Information Systems 
(TOIS), 30(1):6, 2012.
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Is it an easy or difficult task?

Gradient descent cannot be applied directly

Rank-based measures (NDCG, ERR, MAP, …) 
depend on documents sorted order

• gradient is either 0 (sorted order did not change)
or undefined (disconCnuity)

Solu5on: we need a proxy Loss func5on
• it should be differen5able
• and with a similar behavior of the original cost func5on
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Point-Wise Algorithms

di yi

Training Instance
Each document is considered 
independently from the others
• No information about other candidates for 

the same query is used at training time

A different cost-function is optimized
• Several approaches: Regression, Multi-Class 

Classification, Ordinal regression, … [Liu11]

Among Regression-Based:
Gradient Boosting Regression Trees [Fri01]

• Sum of Squared Errors (SSE) is minimized
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[Liu11] Tie-Yan Liu. Learning to rank for information retrieval, 2011. Springer.
[Fri01] Jerome H Friedman. Greedy function approximation: a gradient boosting machine. Annals of statistics, pages 1189–1232, 2001.

Training Algo: GBRT
Loss Function: SSE

…



Gradient Boosting Regression Trees

Iterative algorithm:

Each fi is regarded as a step in the best optimization direction,
i.e., a steepest descent step:

Given L = SSE/2:

Gradient gi is approximated by a Regression Tree ti
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Pair-wise Algorithms: RankNet[BSR+05]

Documents are considered in pairs
Estimated probability that di is better than dj is:

Let Tij be the true probability, the Cross Entropy Loss is:

We consider only pairs where di is better than dj ,ie., yi > yj :

This is differentiable: used to train a Neural Network with back-propagation.

Other approaches: Ranking-SVM[Joa02], RankBoost[FISS03], …
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[BSR+05] Chris Burges, Tal Shaked, Erin Renshaw, Ari Lazier, MaR Deeds, Nicole Hamilton, and Greg Hullender. Learning to rank using gradient descent. In Proceedings of the 22nd internaXonal 
conference on Machine learning, pages 89–96. ACM, 2005.
[Joa02] Thorsten Joachims. Op2mizing search engines using clickthrough data. In Proceedings of the eighth ACM SIGKDD internaXonal conference on Knowledge discovery and data mining, 
pages 133–142. ACM, 2002.
[FISS03] Yoav Freund, Raj Iyer, Robert E Schapire, and Yoram Singer. An efficient boos2ng algorithm for combining preferences. Journal of machine learning research, 4(Nov):933–969, 2003.

di

Training Instance

Training Algo: ANN
Loss: Cross Entropy

dj
with yi>yj

Pij =
eoij

1 + eoij
oij = F(di)-F(dj) 

Cij = log(1 + e�oij )
If  oij→ +∞

(i.e., correctly ordered)
Cij→ 0

If  oij→ -∞
(i.e., mis-ordered)
Cij→ +∞

Cij = �Tij logPij � (1� Tij) log(1� Pij)



Pair-wise Algorithms
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[CQL+07] Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. Learning to rank: from pairwise approach to listwise approach. In Proceedings of the 24th international conference on 
Machine learning, pages 129–136. ACM, 2007.

RankNet performs 
better than other 

pairwise algorithms

RankNet cost is not
nicely correlated with 

NDCG quality



List-wise Algorithms: LambdaMart[Bur10]

Training Algo: GBRT
Lambda Gradients

di !i

Training Instance

q: …d1 d2 d3 dj d|q| 

Recall: GBRT requires a gradient gi for every di

First: estimate the gradient comparing to dj, with yi>yj :

Then: estimate the gradient comparing to every other dj for q
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…

Δ Quality
a)er swapping di with dj

derivative of the 
negative RankNet cost

If  oij→ +∞ 
(i.e., correctly ordered)

!ij → 0

If  oij→ -∞ 
(i.e., mis-ordered)
!ij → |Δ NDCG|

gi = �i =
X

yi>yj

�ij �
X

yi<yj

�ij

�ij =
1

1 + eoij
|�NDCG| = ��ji

Top documents are 
more relevant !



List-wise Algorithms: some results

• NDCG@10 on public LtR Datasets

Other approaches: ListNet/ListMLE[CQL+07], Approximate Rank[QLL10], SVM AP[YFRJ07], RankGP[YLKY07], others ...
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Algorithm MSN10K Y!S1 Y!S2 Istella-S
RankingSVM 0.4012 0.7238 0.7306 N/A

GBRT 0.4602 0.7555 0.7620 0.7313
LambdaMART 0.4618 0.7529 0.7531 0.7537

[CQL+ 07] Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. Learning to rank: from pairwise approach to listwise approach. In Proceedings of the 24th international conference on 
Machine learning, pages 129–136. ACM, 2007.
[QLL10] Tao Qin, Tie-Yan Liu, and Hang Li. A general approximation framework for direct optimization of information retrieval measures. Information retrieval, 13(4):375–397, 2010.
[YFRJ08] Yisong Yue, Thomas Finley, Filip Radlinski, and Thorsten Joachims. A support vector method for optimizing average precision. In Proceedings of the 30th annual international ACM SIGIR 
conference on Research and development in information retrieval, pages 271– 278. ACM, 2007.
[YLKY07] Jen-Yuan Yeh, Jung-Yi Lin, Hao-Ren Ke, and Wei-Pang Yang. Learning to rank for information retrieval using genetic programming. In Proceedings of SIGIR 2007 Workshop on Learning to 
Rank for Information Retrieval (LR4IR 2007), 2007.



Learning to Rank Algorithms
• New approaches to optimize IR 

measures:
• DirectRank[XLL+08], LambdaMart[Bur10], 

BLMart[GCL11], SSLambdaMART[SY11], 
CoList[GY14], LogisticRank[YHT+16], 
LambdaLoss[WGB+19] …
See [Liu11][TBH15].

• Deep Learning to improve query-
document matching:
• Conv.DNN[SM15], DSSM[HHG+13], 

Dual-Embedding[MNCC16],
Local and Distributed repr.[MDC17], 

Weak Supervision[DZS+17], 
Neural Click Model[BMdRS16], …

• On-line learning:
• Multi-armed bandits [RKJ08], 

Dueling bandits [YJ09], 
K-armed dueling bandits[YBKJ12], 
online learning[HSWdR13][HWdR13], …

18

Figure from [Liu11]
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[Liu11] Tie-Yan Liu. Learning to rank for information retrieval, 2011. Springer.

[TBH15] Niek Tax, Sander Bockting, and Djoerd Hiemstra. A cross-benchmark comparison of 87 learning to rank methods. Information processing & management, 51(6):757–772, 2015.



In this session we focus on GBRTs

Ads Click Prediction: GBDT as a feature extractor,  then LogReg [HPJ+14]

Ads Click Prediction: refine/boost NN output [LDG+17]

Product Ranking: 100 GBDTs with pairwise ranking [SCP16] 

Document Ranking: GBDT named LogisticRank [YHT+16]

Ranking, forecasting & recommendations: Oblivious GBRT

19
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In this session we focus on GBRTs
• Successful in several Data Challenges:
• Winner of the Yahoo! LtR Challenge: combination of 12 ranking models,

8 of which were Lambda-MART models, each having up to 3,000 trees [CC11]
• According to the 2015 statistics, GBRTs were adopted by the majority of the

winning solutions among the Kaggle competitions, even more than the
popular deep networks, and all the top-10 teams qualified in the KDDCup
2015 used GBRT-based algorithms [CG16]

• New interesting open-source implementations:
• XGBoost, LightGBM by Microsoft, CatBoost by Yandex

• Pluggable within Apache Lucene/Solr
• https://www.techatbloomberg.com/blog/bloomberg-integrated-learning-rank-apache-solr/
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[CC11] Olivier Chapelle and Yi Chang. Yahoo! learning to rank challenge overview. In Proceedings of the Learning to Rank Challenge, pages 1–24, 2011.
[CG16] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of the 22Nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD ’16, pages 785–794, New York, NY, USA, 2016. ACM.

https://www.techatbloomberg.com/blog/bloomberg-integrated-learning-rank-apache-solr/


Single-Stage Ranking

Requires to apply the learnt model to every matching document,
and to generate the required features.
Not feasible!

We have at least 3 efficiency vs. effectiveness trade-offs.
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Single-Stage Ranking

①Feature Computation Trade-off
• Computationally Expensive & highly discriminative features vs. 

computationally Cheap & slightly discriminative features
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Two-Stage Ranking

Expensive features are computed only for the top-K candidate documents passing the first stage. 
How to chose K?
②Number of Matching Candidates Trade-off :
• a Large set of candidates is Expensive and produces high-quality results vs. 

a Small set of candidates is Cheap and produces low-quality results
• 1000 documents [DBC13] (Gov2, ClueWeb09-B collections)
• 1500-2000 documents [MSO13] (ClueWeb09-B)
• “hundreds of thousands” (over “hundreds of machines”) [YHT+16a]

Lucchese C., Nardini F.M.  - Session I: Efficiency/Effectiveness Trade-offs 23

Query +
top-K docs

STAGE 1:

Recall-oriented 
Ranking

STAGE 2:

Precision-oriented 
Ranking

Query +
Matching Docs Results

[DBC13] Van Dang, Michael Bendersky, and W Bruce Croft. Two-stage learning to rank for information retrieval. In Advances in Information Retrieval, pages 423–434. Springer, 2013.
[MSO13] Craig Macdonald, Rodrygo LT Santos, and Iadh Ounis. The whens and hows of learning to rank for web search. Information Retrieval, 16(5):584–628, 2013.
[YHT+16] Dawei Yin, Yuening Hu, Jiliang Tang, Tim Daly, Mianwei Zhou, Hua Ouyang, Jianhui Chen, Changsung Kang, Hongbo Deng, Chikashi Nobata, et al. Ranking relevance in yahoo search. In 
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 323–332. ACM, 2016.



Multi-Stage Ranking

• 3 stages [YHT+16]: Contextual features are considered in the 3rd stage
• Contextual => about the current result set
• Rank based on specific features, Mean, Variance, Standardized features (see also [LNO+15a]), topic model similarity
• First two stages are executed at each serving node

• N stages [CGBC17]: Which model in each stage? Which features? How many documents?
• About 200 configurations tested, best results with N=3 stages, 2500 and 700 docs between stages 

• Predict the best k for STAGE 1 [CCL16], the best processing pipeline [MCB+18], 
learn the pipeline at training time [CGBC19]

Lucchese C., Nardini F.M.  - Session I: Efficiency/Effeceveness Trade-offs 24

STAGE 1:

Recall-oriented 
Ranking

STAGE 2:

Precision-oriented 
Ranking

Query +
Matching Docs

Query +
Top 30

[YHT+16] Dawei Yin, Yuening Hu, Jiliang Tang et al. Ranking relevance in yahoo search. In Proceedings of the 22nd ACM SIGKDD. ACM, 2016.
[CGBC17] Ruey-Cheng Chen, Luke Gallagher, Roi Blanco, and J. Shane Culpepper. Efficient cost-aware cascade ranking in multi-stage retrieval. In Proceedings of ACM SIGIR ACM, 2017.
[MCB+18] Mackenzie, J., Culpepper, J. S., Blanco, R., et al. Query Driven Algorithm Selection in Early Stage Retrieval. In Proceedings of WSDM. ACM, 2018.
[CCL16] Culpepper, J. S., Clarke, C. L., & Lin, J. Dynamic cutoff prediction in multi-stage retrieval systems. In Proceedings of the 21st Australasian Document Computing Symposium. ACM, 2016.
[CGBC19] L. Gallagher, R. Chen, R. Blanco, J. S. Culpepper, Joint Optimization of Cascade Ranking Models. In Proc. ACM WSDM 2019.
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Multi-Stage Ranking

③Model Complexity Trade-off :

• Complex & Slow high-quality vs. Simple & Fast low-quality models:
• Complex as: Random Forest, GBRT, Initialized GBRT, Lambda-MART, 
• Simple as: Coordinate Ascent, Ridge Regression, SVM-Rank, RankBoost
• In-between as: Oblivious Lambda-Mart, ListNet
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Model Complexity Trade-off

• Comparison on varying training parameters [CLN+16]:
• #trees, #leaves, learning rate, etc.

• Complex models achieve significantly higher quality
• Best model depends on time budget

• Today is about Model Complexity Trade-off!

Lucchese C., Nardini F.M.  - Session I: Efficiency/EffecKveness Trade-offs 26
[CLN+16] Gabriele Capannini, Claudio Lucchese, Franco Maria Nardini, Salvatore Orlando, Raffaele Perego, and Nicola Tonellotto. Quality versus efficiency in document scoring with learning-to-
rank models. Information Processing & Management, 2016.



Next …

Efficiency/Effec*veness trade-offs in:
• Feature Selec*on
• Enhanced Learning Algorithms
• Approximate scoring
• Fast Scoring
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