Learning to Rank in Theory and Practice

From Gradient Boosting to Neural Networks and Unbiased Learning

Tutorial @ ACM SIGIR 2019
http://Itr-tutorial-sigir19.isti.cnr.it/

Session |: Efficiency/Effectiveness Trade-offs

Claudio Lucchese Franco Maria Nardini
Ca’ Foscari University of Venice HPC Lab, ISTI-CNR
Venice, Italy Pisa, Italy

M Wiy,
BN \
sene [
=N 7 (4E
o VHESY S50 o
Dol ’ b
Yomp ¥OO



http://ltr-tutorial-sigir19.isti.cnr.it/

Two-stage (or more) Ranking Architecture

Recall-oriented top-K docs Precision-oriented
Ranking Ranking

Matching Docs

Query +




Efficiency/Effectiveness Trade-offs

e Efficiency in Learning to Rank (LtR) has been
addressed in different ways

Learned Model Application

* Main research lines

* Feature selection

* Optimizing efficiency within the learning process

* Approximate score computation and efficient cascades
 Efficient traversal of tree-based models

sample

with features Learned

Model i

K docs

/

|

|

|
>
|

|

|

Training Learning to Rank
Data Techinque

* Different impact on the architecture




Feature Selection



Feature Selection

* A reduced set of highly discriminative and non redundant features results in a
reduced feature extraction cost and in a faster learning/ranking

Classification of feature selection methods [GEO3]

* Filter methods: feature selection is defined as a preprocessing step and can be independent from
learning

* Wrapper methods: utilizes a learning system as a black box to score subsets of features
* Embedded methods: perform feature selection within the training process

* Wrapper or embedded methods: higher computational cost / algorithm dependent
* not suitable for a LtR scenario involving hundreds of continuous or categorical features

Focus on filter methods

* Allow for a fast pre-processing of the dataset
* Totally independent from the learning process

[GEO3] Isabelle Guyon and Andre Elisseff. An introduction to variable and feature selection. The Journal of Machine Learning
Research, 3:1157-1182, 2003.



GAS [GLQLO7]

* Geng et al. are the first proposing feature selection methods for ranking

* Authors propose to exploit ranking information for selecting features

* They use IR metrics to measure the importance of each feature
 MAP, NDCG: rank instances by feature, evaluate and take the result as importance score

* They use similarities between features to avoid selecting redundant ones
* By using ranking results of each feature: Kendall’s tau, averaged over all queries

* Feature selection as a multi-objective optimization problem: maximum
importance and minimum similarity

* Greedy Search Algorithm (GAS) performs feature selection iteratively

* Update phase needs the tuning of an hyper-parameter ¢ weighting the impact of the
update

[GLQLO7] X. Geng, T. Liu, T. Qin, and H. Li. Feature selection for ranking. In Proc. ACM SIGIR, 2007.



GAS [GLQLO7]

* Experiments
e .govand TREC 2004 Web Track
* BM25 as first stage
* 44 features per doc

e Evaluation Measures
* MAP
* NDCG

* Applied to second stage ranker
* Ranking SVM
* RankNet

NDCG@10

0.67

0.66
0.65 -
0.64
0.63 -
0.62
0.61 -
0.6 -
0.59 -

0.58

0} 10 20 30 40

feature number

50

—o— GASL

—><—CHI

—s— GASE

(b) NDCG@10 of Ranking SVM

NDCG@10

0.66

0.65
0.64 -
0.63
0.62 -
0.61 -
06 -
0.59 -
0.58 -

0.57

0} 10 20 30 40

feature number

50

—o— GASL

—<— CH|

—=— GASE

(b) NDCG@10 of RankNet




Fast Feature Selection for LtR [GLNP16]

* Gigli et al. propose three novel filter methods providing flexible and
model-free feature selection
* Two parameter-free variations of GAS: NGAS and XGAS

* HCAS exploits hierarchic

* Only one feature per gro
* Two variants: Single-linkz

* Importance of a feature
single feature

e Similarity between feattL
* No need to tune hyper-

[GLNP16] A. Gigli, C. Lucchese, F. M. Nardini, and R. Perego. Fast feature selection for learning to rank. In Proc. ACM ICTIR, 2016.



Fast Feature Selection for Learning to Rank

* Experiments
* MSLR-Web10K (Fold1) and Yahoo LETOR

* By varying the subset sampled MSN.1

* Results confirms Geng et al. [GLQLO7] Subset NGAS XGAS HCAS HCAS GAS
. % p = 0.05 “single” “ward” c = 0.01

[ )

Evaluation Measures 5% 0.40117  0.43764 [0.44234) 0.4289  0.4294

* NDCG@10 10% 0.4459  0.4528 | 0.464340.4434Y 0.4515

20% 0.4710 0.4577" 0.48704) 0.4820  0.4758

e For small subsets (5%, 10%, 20%): 30% 047397 0.4825  0.4854 0.4879  0.4848
. . 40% 0.4813  0.4834  0.4848 0.4853 0.4863

* Best performance by HCAS with “Single Full 0.4863 04863  0.4863 0.4863  0.4863

Linkage”.

 Statistically significant w.r.t. GAS
* Performance against the full model



Further Reading

* Pan et al. use boosted regression trees to investigate greedy and randomized wrapper
methods [PCA+09].

* Dang and Croft propose a wrapper method that uses best first search and coordinate
ascent to greedily partition a set of features into subsets to be selected [DC10].

* Hua et al. propose a feature selection method based on clustering: k-means is first used
to aggregate similar features, then the most relevant feature in each cluster is chosen to

form the final set [HZL+10].

e Laporte et al. [LFC+12] and Lai et al. [LPTY13] use embedded methods for selecting
features and building the ranking model at the same step, by solving a convex
optimization problem.

* Naini and Altingovde use greedy diversification methods to solve the feature selection
problem [NA14%.

e Xu et al. solve the feature selection task by modifying the gradient boosting algorithm
used to learn forests of regression trees [XHW+14].



Optimizing Efficiency within
the Learning Process




Learning to Efficiently Rank [WLM 10}

* Wang et al. propose a new cost function for learning models that
directly optimize the tradeoff metric: Efficiency-Effectiveness Tradeoff

Metric (EET)

o
(o]
«

vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

1
EET(Q) = > Meer(R) = - > EET(Q)
* New efficiency metrics: constant, step, exponential |
* Focus on linear feature-based ranking functions ", |-==Step » expontal cocay

e Learned functions show significant decreased
average query execution times

Efficiency
'C> o
N [e2]

.
o
;

w
-
i
-
.
LT

OO

200

L. Wang, J. Lin, and D. Metzler. Learning to efficiently rank. In Proc. SIGIR 2010. Ranking tme (ms) °°



Cost-Sensitive Tree of Classifiers [XKWC13]

* Xu et al. observe that the test-time cost of a classifier is often
dominated by the computation required for feature extraction

* Cost-Sensitive Tree of Classifiers: each path nvtracte diffavant fantirae
and it is optimized for a specific sub-partit

* Reduction of the average test-time complexit

* Input-dependent feature selection o ol

* Dynamic allocation of time budgets: higher b ©

0.735}

0.731

0.721 —— Stage-wise regression (Friedman, 2001) [

==a== Single cost—sensitive classifier

o EX p e ri m e ntS 0715 _ —— Early exit s=0.2 (Cambazoglu et. al. 2010)_

Early exit s=0.3 (Cambazoglu et. al. 2010)
* Yahoo LETOR dataset ol /
* Quality vs Cost

NDCG

Early exit s=0.5 (Cambazoglu et. al. 2010)
=== Cronus optimized (Chen et. al. 2012)
CSTC w/o fine-tuning

== CSTC
0.5 1 15 2
Cost x10%

0.705
0

Z. Xu, M. J. Kusner, K. Q. Weinberger, and M. Chen. Cost-sensitive tree of classifiers. In Proc. ICML, 2013.



Training Efficient Tree-Based Models for
Document Ranking [AL13]

* Asadi and Lin propose techniques for training GBRTs that have efficient runtime
characteristics.

* compact, shallow, and balanced trees yield faster predictions

Cost-sensitive Tree Induction: jointly minimize the loss and the evaluation cost

Two strategies

* By directly modifying the node splitting criterion during tree induction
* Allow split with maximum gain if it does not increase the maximum depth of the tree
* Find a node closer to the root which, if split, result in a gain larger than the discounted maximum gain

* Pruning while boosting with focus on tree depth and density

» Additional stages compensate for the loss in effectiveness
* Collapse terminal nodes until the number of internal nodes reach a balanced tree

* Experiments on MSLR-WEB10K show that the pruning approach is superior.
* 40% decrease in prediction latency with minimal reduction in final NDCG.

N. Asadi and J. Lin. Training efficient tree-based models for document ranking. In Proc. ECIR, 2013.



CLEAVER [LNO+16a]

* Lucchese et al. propose a pruning & re-weighting
post-processing methodology

APRATAL PR TALT PR TAL PR TAL PR TR N PN
td -~ y vV

* Several pruning strategies
 random, last
* skip, low weights
e score loss
* quality loss INPUT MODEL OUTPUT MODEL

* Greedy line search strategy applied to tree weights
* Experiments on MART and LambdaMART

* MSLR-Web30K and Istella-S LETOR
* Quality loss: same effectiveness of the original model with up to 20% of the trees

H3IAvVID

C. Lucchese, F. M. Nardini, S. Orlando, R. Perego, F. Silvestri, and S. Trani. Post-learning optimization of tree ensembles for
efficient ranking. In Proc. ACM SIGIR, 2016.



X-CLEAVER [LNO+18]

* Pruning anc

1. Redund:
2. Weights
ranking

* Same pruni

* Experiment:
* Pruning at
single pos

e X-CLEQVEF
performar

0.760

0.755

0.750 |

0.745 |-

NDCG@10
o
~
N
o

0.735 |
0.730
0.725

0.720
0

X-CLEaVER Testing Performance

— X-CLEaVER
— A-MART

200 400 600 800 1000 1200 1400

Ensemble

_ the desired

1 -1, Istella-S
{ an applying a

0SS Iin

[LNO+18] C. Lucchese, F. M. Nardini, S. Orlando, R. Perego, F. Silvestri, and S. Trani. X-CLEAVER: Learning Ranking Ensembles
by Growing and Pruning Trees. ACM TIST, 2018.



DART [VGB15]

e Rashmi and Gilad-Bachrach propose to employ dropouts from NN
while learning a MART: DART
* Dropouts as a way to fight over-specialization
* Shrinkage helps but does not solve

 DART differs from MART

* When learning a new tree, a subset of the
model is muted (random)

* Normalization step when adding a new tree
to avoid overshooting

0.0001

1E-08

1E-12

Average prediction (abs)

1E-16 ——m-

* Experiments on MSLR-Web10K, NDCG@3 AR ARt s — WART i sk

1E-20 [ I
1 10 100 1000

* Improvement over LambdaMART Tree index

K. V. Rashmi and R. Gilad-Bachrach. DART: Dropouts meet Multiple Additive Regression Trees. In PMLR, 2015



X-DART [LNO+17]

* Lucchese et al. merge DART with pruning while training
 like DART, some trees are muted and this set is removed after fitting if needed

* Two good news
e X-DART builds even more compact models than DART
 Smaller models are less prone to overfitting: potential for higher effectiveness

* Three strategies for pruning trees
* Ratio, Fixed, Adaptive

* Experiments on MSLR-Web30K and Istella-S

* X-DART (adaptive) provide statistically significant
improvements w.r.t. DART with up to 20% less trees

e Same effectiveness of DART with up to 40% less trees = i

NDCG@10
o o

300
Ensemble Size (# of trees)

[LNO+17] C. Lucchese, F. M. Nardini, S. Orlando, R. Perego, and S. Trani. X-DART: Blending dropout and pruning for efficient
learning to rank. In Proc. ACM SIGIR, 2017.



Further Reading

e Xu et al. take into account the feature extraction cost during training to
explicitly minimize the cpu-time during testing [XWC12]
* Greedy Miser: extension of the stage-wise regression
e Evaluation on Yahoo LETOR
* Better efficiency-effectiveness trade-off w.r.t. stage-wise regression

* Peter et al. introduce the cost effective gradient boosting (GEGB) by taking
into account both the feature extraction and the node evaluation costs

* Trees are grown in best-first order: splits are evaluated for all current leaves and the
one with the best objection reduction is chosen.

* Experiments on Yahoo LETOR
* GEGB outperforms Greedy Miser

[XWC12] Z. Xu, K. Weinberger, O. Chapelle. The Greedy Miser: Learning under Test-time Budgets. In Proc. ICML, 2012.
[PDHN17] S. Peter, F. Diego, F. Hamprect, B. Nadler. Cost efficient Gradient Boosting. In Proc. NIPS, 2017.



