
Learning to Rank in Theory and Prac3ce
From Gradient Boos3ng to Neural Networks and Unbiased Learning

Tutorial @ ACM SIGIR 2019
hIp://ltr-tutorial-sigir19.is3.cnr.it/

Session I: Efficiency/Effec3veness Trade-offs

Claudio Lucchese
Ca’ Foscari University of Venice

Venice, Italy

Franco Maria Nardini
HPC Lab, ISTI-CNR

Pisa, Italy

http://ltr-tutorial-sigir19.isti.cnr.it/

Two-stage (or more) Ranking Architecture

Query +
top-K docs

STAGE 1

Recall-oriented
Ranking

STAGE 2

Precision-oriented
Ranking

Query

Results

Matching Docs

Efficiency/Effectiveness Trade-offs

• Efficiency in Learning to Rank (LtR) has been
addressed in different ways

• Main research lines
• Feature selection
• Optimizing efficiency within the learning process
• Approximate score computation and efficient cascades
• Efficient traversal of tree-based models

• Different impact on the architecture

Efficient and Effective Retrieval using Selective Pruning

Nicola Tonellotto
Information Science and Technologies Institute

National Research Council
56124 Pisa, Italy

nicola.tonellotto@isti.cnr.it

Craig Macdonald, Iadh Ounis
School of Computing Science

University of Glasgow
Glasgow, G12 8QQ, UK

{craig.macdonald,iadh.ounis}@glasgow.ac.uk

ABSTRACT

Retrieval can be made more efficient by deploying dynamic
pruning strategies such as Wand, which do not degrade ef-
fectiveness up to a given rank. It is possible to increase the
efficiency of such techniques by pruning more ‘aggressively’.
However, this may reduce effectiveness. In this work, we
propose a novel selective framework that determines the ap-
propriate amount of pruning aggressiveness on a per-query
basis, thereby increasing overall efficiency without signifi-
cantly reducing overall effectiveness. We postulate two hy-
potheses about the queries that should be pruned more ag-
gressively, which generate two approaches within our frame-
work, based on query performance predictors and query ef-
ficiency predictors, respectively. We thoroughly experiment
to ascertain the efficiency and effectiveness impacts of the
proposed approaches, as part of a search engine deploying
state-of-the-art learning to rank techniques. Our results on
50 million documents of the TREC ClueWeb09 collection
show that by using query efficiency predictors to target in-
efficient queries, we observe that a 36% reduction in mean
response time and a 50% reduction of the response times
experienced by the slowest 10% of queries can be achieved
while still ensuring effectiveness.

Categories and Subject Descriptors: H.3.3 [Informa-
tion Storage & Retrieval]: Information Search & Retrieval

Keywords: Efficient & Effective Search Engines, Dynamic
Pruning, Learning to Rank, Query Efficiency Prediction

1. INTRODUCTION
Web search engines and other large-scale information re-

trieval (IR) systems are not just concerned with the quality
of search results (also known as effectiveness), but also with
the speed with which the results are obtained (efficiency).
These aspects form a natural tradeoff that all search engines
must address, in that many approaches that increase effec-
tiveness may have a corresponding impact on efficiency due
to their complex nature [35].

Increasingly, search engines deploy learning to rank ap-
proaches, whereby a learned model combines many features
into an effective approach for ranking [20]. Our work is
firmly placed in a learning to rank setting, where a typical

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WSDM’13, February 4–8, 2013, Rome, Italy.
Copyright 2013 ACM 978-1-4503-1869-3/13/02 ...$15.00.

Inverted
Index

Dynamic
pruning (K,F)

Computation
of Features

Learned
Model

Features
Repository

Learning to Rank
Techinque

Training
Data

Query Results

Top K Retrieval Feature Extraction Learned Model Application

sample
sample

with features

K docs K docs

Figure 1: Phases of retrieval by a search engine.

search engine consists of three phases of operation, as follows
(illustrated in Figure 1):

Top K Retrieval: An initial ranking strategy selects K
documents from the inverted index, identified using a single
feature (often the BM25 weighting model) [7, 20]. Dynamic
pruning strategies such as Wand can be applied to efficiently
generate the set of K results (called the sample [20, 25]).

Feature Extraction: Computation of additional fea-
tures for each document in the sample, such as other weight-
ing models, including those calculated on different fields (an-
chor text, title, etc.) or query independent features (URL
length, PageRank, etc.).

Learned Model Application: Re-ranking of the sample
results by the application of a learned model, obtained by
earlier learning on training data, to increase effectiveness
compared to the sample [20].

The first phase of the retrieval process – where the K
documents of the sample are identified – is data intensive,
and hence, as we will later show, has the largest impact on
efficiency. For this reason, efficient retrieval strategies such
as the Wand dynamic pruning strategy can be deployed.
Indeed, Wand can enhance efficiency by avoiding the scor-
ing of documents that can never be retrieved in the top K
results, without degrading the effectiveness up to rank K,
known as safe-to-rank-K. Wand can be made more efficient
by reducing the number of documents K to be retrieved.
It is possible to further increase the efficiency of Wand by
applying the pruning more aggressively, but at loss of the
guaranteed safeness, with possible degradations in the ef-
fectiveness of the results. The Top K Retrieval phase also
impacts overall effectiveness in two manners: (i) Decreasing
K such that a smaller sample is obtained may miss relevant
documents at deeper ranks, which will have no chance of be-
ing re-ranked towards the top by the learned model, hence
degrading the overall effectiveness of the search engine; (ii)
The pruning aggressiveness used to obtain the sample may
also impact the resulting effectiveness after re-ranking by the
learned model, as the sample is no longer safe-to-rank-K.

In this work, we aim to ensure effective and efficient re-
trieval, by selecting which queries should be pruned more

63

Feature Selection

Feature Selec+on

• A reduced set of highly discriminative and non redundant features results in a
reduced feature extraction cost and in a faster learning/ranking
• Classification of feature selection methods [GE03]

• Filter methods: feature selection is defined as a preprocessing step and can be independent from
learning

• Wrapper methods: utilizes a learning system as a black box to score subsets of features

• Embedded methods: perform feature selection within the training process

• Wrapper or embedded methods: higher computational cost / algorithm dependent
• not suitable for a LtR scenario involving hundreds of continuous or categorical features

• Focus on filter methods
• Allow for a fast pre-processing of the dataset

• Totally independent from the learning process

[GE03] Isabelle Guyon and Andre Elisseff. An introduction to variable and feature selection. The Journal of Machine Learning

Research, 3:1157–1182, 2003.

GAS [GLQL07]

• Geng et al. are the first proposing feature selec3on methods for ranking
• Authors propose to exploit ranking informa3on for selec3ng features

• They use IR metrics to measure the importance of each feature
• MAP, NDCG: rank instances by feature, evaluate and take the result as importance score

• They use similari-es between features to avoid selec3ng redundant ones
• By using ranking results of each feature: Kendall’s tau, averaged over all queries

• Feature selec3on as a mul--objec-ve op-miza-on problem: maximum
importance and minimum similarity
• Greedy Search Algorithm (GAS) performs feature selec3on itera-vely

• Update phase needs the tuning of an hyper-parameter c weigh3ng the impact of the
update

[GLQL07] X. Geng, T. Liu, T. Qin, and H. Li. Feature selection for ranking. In Proc. ACM SIGIR, 2007.

GAS [GLQL07]

• Experiments
• .gov and TREC 2004 Web Track
• BM25 as first stage
• 44 features per doc

• Evaluation Measures
• MAP
• NDCG

• Applied to second stage ranker
• Ranking SVM
• RankNet

notion of category in ranking differs, in theory these two methods
cannot be directly applied to ranking. As approximation, we
treated “relevant” and “irrelevant” in the .gov data as two
categories, and treated “definitely relevant,” “possibly relevant,”
and “not relevant” in the OHSUMED dataset as three categories.
That is to say, the order information among the “categories” was
ignored. Note that in practice IG and CHI are directly used as
feature selection methods in ranking, and such kind of
approximation is always made. In addition, we also used “With
All Features (WAF)” as another baseline, in order to show the
benefit of conducting feature selection.

4. EXPERIMENTAL RESULTS

4.1 The .gov data
Fig.2 shows the performances of the feature selection methods on
the .gov dataset when they work as preprocessors of Ranking
SVM. Fig.3 shows the performances when using RankNet as the
ranking model. In the figures, the x-axis represents the number of
selected features.
Let us take Fig.2(a) as example. One can find that by using our
algorithms (GAS-E and GAS-L), with only six features Ranking
SVM can achieve the same or even better performances when
compared with the baseline method WAF. With more features
selected, the performances can be further enhanced. In particular,
when the number of features is 18, the ranking performance
becomes relatively 15% higher than that of WAF.

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0 10 20 30 40 50

M
AP

feature number

GAS-L

IG

CHI

GAS-E

(a) MAP of Ranking SVM

0.58

0.59

0.6

0.61

0.62

0.63

0.64

0.65

0.66

0.67

0 10 20 30 40 50

ND
CG

@
10

feature number

GAS-L

IG

CHI

GAS-E

(b) NDCG@10 of Ranking SVM

Fig. 2 Ranking accuracy of Ranking SVM with different
feature selection methods on the .gov dataset

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0 10 20 30 40 50

M
AP

feature number

GAS-L

IG

CHI

GAS-E

(a) MAP of RankNet

0.57

0.58

0.59

0.6

0.61

0.62

0.63

0.64

0.65

0.66

0 10 20 30 40 50

N
DC

G@
10

feature number

GAS-L

IG

CHI

GAS-E

(b) NDCG@10 of RankNet

Fig. 3 Ranking accuracy of RankNet with different feature
selection methods on the .gov dataset

When the number of selected features further increases, the
performances do not improve, and in some cases, they even
decrease. This validates the necessity of feature selection: the use
of more features does not necessarily lead to a higher ranking
performance. The reason is that when more features are available,
although the performance on the training set may get better, the
performance on the test set may deteriorate, due to over-fitting.
This is a phenomenon widely observed in other learning tasks
such as classification [7]. Therefore, effective feature selection
can improve both accuracy and efficiency (it is trivial) of learning
for ranking.

Experimental results indicate that in most cases GAS-L can
outperform GAS-E, although not significantly. Our explanation to
this is as follows. Since feature selection is used as preprocessing
of training, it is better to make the feature selection more coherent
with the ranking model (i.e. GAS-L). The features selected by
GAS-E may be good in terms of MAP or NDCG; however, they
might not be good for training the model. Note that the difference
between GAS-E and CAS-L is small, which does not prevent
them from both outperforming other feature selection methods.
Experimental results also indicate that with GAS-L and GAS-E as
feature selection methods the ranking performances of Ranking
SVM are more stable than those with IG and CHI as feature
selection methods. This is particularly true when the number of
selected features is small. For example, from Fig.2(a) we can see
that with four features, the MAP values of GAS-L and GAS-E are
more than 0.3, while those of IG and CHI are only 0.28 and 0.25
respectively. Furthermore, IG and CHI cannot lead to clearly

SIGIR 2007 Proceedings Session 16: Learning to Rank II

411

notion of category in ranking differs, in theory these two methods
cannot be directly applied to ranking. As approximation, we
treated “relevant” and “irrelevant” in the .gov data as two
categories, and treated “definitely relevant,” “possibly relevant,”
and “not relevant” in the OHSUMED dataset as three categories.
That is to say, the order information among the “categories” was
ignored. Note that in practice IG and CHI are directly used as
feature selection methods in ranking, and such kind of
approximation is always made. In addition, we also used “With
All Features (WAF)” as another baseline, in order to show the
benefit of conducting feature selection.

4. EXPERIMENTAL RESULTS

4.1 The .gov data
Fig.2 shows the performances of the feature selection methods on
the .gov dataset when they work as preprocessors of Ranking
SVM. Fig.3 shows the performances when using RankNet as the
ranking model. In the figures, the x-axis represents the number of
selected features.
Let us take Fig.2(a) as example. One can find that by using our
algorithms (GAS-E and GAS-L), with only six features Ranking
SVM can achieve the same or even better performances when
compared with the baseline method WAF. With more features
selected, the performances can be further enhanced. In particular,
when the number of features is 18, the ranking performance
becomes relatively 15% higher than that of WAF.

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0 10 20 30 40 50

M
AP

feature number

GAS-L

IG

CHI

GAS-E

(a) MAP of Ranking SVM

0.58

0.59

0.6

0.61

0.62

0.63

0.64

0.65

0.66

0.67

0 10 20 30 40 50

ND
CG

@
10

feature number

GAS-L

IG

CHI

GAS-E

(b) NDCG@10 of Ranking SVM

Fig. 2 Ranking accuracy of Ranking SVM with different
feature selection methods on the .gov dataset

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0 10 20 30 40 50

M
AP

feature number

GAS-L

IG

CHI

GAS-E

(a) MAP of RankNet

0.57

0.58

0.59

0.6

0.61

0.62

0.63

0.64

0.65

0.66

0 10 20 30 40 50

N
DC

G@
10

feature number

GAS-L

IG

CHI

GAS-E

(b) NDCG@10 of RankNet

Fig. 3 Ranking accuracy of RankNet with different feature
selection methods on the .gov dataset

When the number of selected features further increases, the
performances do not improve, and in some cases, they even
decrease. This validates the necessity of feature selection: the use
of more features does not necessarily lead to a higher ranking
performance. The reason is that when more features are available,
although the performance on the training set may get better, the
performance on the test set may deteriorate, due to over-fitting.
This is a phenomenon widely observed in other learning tasks
such as classification [7]. Therefore, effective feature selection
can improve both accuracy and efficiency (it is trivial) of learning
for ranking.

Experimental results indicate that in most cases GAS-L can
outperform GAS-E, although not significantly. Our explanation to
this is as follows. Since feature selection is used as preprocessing
of training, it is better to make the feature selection more coherent
with the ranking model (i.e. GAS-L). The features selected by
GAS-E may be good in terms of MAP or NDCG; however, they
might not be good for training the model. Note that the difference
between GAS-E and CAS-L is small, which does not prevent
them from both outperforming other feature selection methods.
Experimental results also indicate that with GAS-L and GAS-E as
feature selection methods the ranking performances of Ranking
SVM are more stable than those with IG and CHI as feature
selection methods. This is particularly true when the number of
selected features is small. For example, from Fig.2(a) we can see
that with four features, the MAP values of GAS-L and GAS-E are
more than 0.3, while those of IG and CHI are only 0.28 and 0.25
respectively. Furthermore, IG and CHI cannot lead to clearly

SIGIR 2007 Proceedings Session 16: Learning to Rank II

411

Fast Feature Selec,on for LtR [GLNP16]

• Gigli et al. propose three novel filter methods providing flexible and
model-free feature selection
• Two parameter-free variations of GAS: NGAS and XGAS
• HCAS exploits hierarchical agglomerative clustering to minimize redundancy.

• Only one feature per group, i.e., the one with highest importance score is chosen.
• Two variants: Single-linkage and Ward’s method.

• Importance of a feature: NDCG@10 achieved by a LambdaMART on a
single feature
• Similarity between features: Spearman’s Rank Correlation.
• No need to tune hyper-parameters!

[GLNP16] A. Gigli, C. Lucchese, F. M. Nardini, and R. Perego. Fast feature selection for learning to rank. In Proc. ACM ICTIR, 2016.

As LtR algorithm we employed the QuickRank [3] imple-
mentation of LambdaMART [18]. In particular, we trained
and tested LambdaMART models consisting of 100 trees
trained using a learning rate equal to 0.01 and a maximum
tree depth of 4 levels. The training was driven by the opti-
mization of the average Normalized Discounted Cumulative
Gain (NDCG) [9] with cuto↵ at 10 results. The same mea-
sure was used for the evaluation of the FS algorithms on the
test set. We report the results of the models learned on the
subsets of 5%, 10%, 20%, 30%, 40% of the total number of
features available. We also performed a randomization test
[15] to assess if the di↵erences in performance are statisti-
cally significant. We both check i) the statistical significance
of the di↵erence in the performance (average NDCG@10) of
each candidate w.r.t. GAS, and ii) the null hypothesys that
the model produced by using the subset computed by one
of our proposal is better than the one induced by GAS, at
significance levels of 5% and 10%.

3.2 Relevance Measures

Our FS algorithms require the definition of functions r(fi)
and s(fi, fj). Our objective for choosing relevance function
r(fi) is to find a robust correlation measure between fi and
documents’ relevance labels in the training data. We took
into consideration Normalized Mutual Information (NMI),
Spearman’s Rank (S), Kendall’s ⌧ (K) and Average Group
Variance (AGV) [16, 1, 2]. Finally, we measured the rele-
vance of a feature fi by the average NDCG@10 achieved by
a LambdaMART model trained on the single feature fi. We
name this strategy LM-1. The higher the values of NMI, S,
K, LM-1 the higher the relevance of the feature analyzed,
and conversely for AGV.

We assess all the above feature relevance measures by
considering the ranking quality (i.e., measured in terms of
NDCG@10 on the test set) achieved by LambdaMART mod-
els learned on the subsets of top-ranked features selected by
the di↵erent measures.

Results reported in Table 1 show that LM-1 is the rel-
evance measure globally providing the best performance in
terms of NDCG@10 on bothMSN-1 and Y!S1 datasets. Geng
et al. report a similar result on di↵erent datasets [5]. On

Table 1: Quality induced by di↵erent feature rele-

vance functions measured in terms of NDCG@10.

Y!S1

Subset NMI AGV S K LM-1

5% 0.7549 0.7552 0.7523 0.7541 0.7545
10% 0.7582 0.7578 0.7575 0.7560 0.7622

20% 0.7641 0.7664 0.7652 0.7663 0.7717

30% 0.7654 0.7717 0.7722 0.7688 0.7734

40% 0.7686 0.7720 0.7719 0.7705 0.7748

Full 0.7753 0.7753 0.7753 0.7753 0.7753

MSN-1

Subset NMI AGV S K LM-1

5% 0.3548 0.3340 0.3280 0.3313 0.4304

10% 0.3742 0.3416 0.3401 0.3439 0.4310

20% 0.4240 0.3776 0.3526 0.3533 0.4330

30% 0.4625 0.3798 0.4312 0.3556 0.4386
40% 0.4627 0.3850 0.4330 0.3788 0.4513
Full 0.4863 0.4863 0.4863 0.4863 0.4863

MSN-1 data, LM-1 is a good relevance predictor in partic-
ular when the subset of the selected features is small. On
the same dataset, results show that AGV, S, and K are not
competitive as feature relevance estimators with significant
di↵erences w.r.t. LM-1. In the rest of the analysis we thus
use LM-1 as the relevance measure r(fi) employed by all the
FS algorithms.

Regarding feature similarity s(fi, fj), Geng et al. exploit
the Kendall’s ⌧ computed between lists of results produced
by two LtR models trained on two di↵erent features, i.e.,
fi and fj [5]. Di↵erently from them, we exploit the Spear-
man’s rank correlation coe�cient as feature similarity func-
tion s(fi, fj). This measure fits well a ranking scenario and
it is much more e�cient to be computed than other mea-
sures such as Kendall’s ⌧ and Normalized Mutual Informa-
tion while producing similar results. For lack of space we do
not report the results confirming this behavior.

3.3 Effectiveness Evaluation

We evaluated the e↵ectiveness of our proposed FS algo-
rithms against GAS by measuring the quality of ranking
models trained after feature selection. The best FS algo-
rithm for a given size of the subset of features is the one
causing the smallest quality loss w.r.t. to the model built on
the full feature set F .

XGAS and GAS algorithms require the tuning of the hyper-
parameter p and c, respectively. We tune these parameters
by applying a bisection method in the range [0, 1]. Dur-
ing each search step, the selected features are evaluated by
training a new LtR model with those features and measur-
ing its performance on the validation set. Bisection process
continues until no significant improvement is observed on
the resulting model.

Table 2: Performance of FS algorithms in terms

of NDCG@10 of the induced model. Statistically

significant di↵erences against GAS are highligthed

with
MO

(increment/decrement) at 10% significance

level and
NH

(increment/decrement) at 5% signifi-

cance level.

Y!S1

Subset NGAS XGAS HCAS HCAS GAS

% p = 0.8 “single” “ward” c = 0.01

5% 0.7430H 0.7655 0.7349H 0.7571O 0.7628

10% 0.7601 0.7666 0.7635 0.7626 0.7649

20% 0.7672 0.7723 0.7666 0.7704 0.7671

30% 0.7717 0.7742 0.7738 0.7743 0.7730

40% 0.7724 0.7751 0.7742 0.7755 0.7737

Full 0.7753 0.7753 0.7753 0.7753 0.7753

MSN-1

Subset NGAS XGAS HCAS HCAS GAS

% p = 0.05 “single” “ward” c = 0.01

5% 0.4011H 0.4376N 0.4423
N 0.4289 0.4294

10% 0.4459 0.4528 0.4643
N 0.4434H 0.4515

20% 0.4710 0.4577H 0.4870
N 0.4820 0.4758

30% 0.4739H 0.4825 0.4854 0.4879 0.4848

40% 0.4813 0.4834 0.4848 0.4853 0.4863

Full 0.4863 0.4863 0.4863 0.4863 0.4863

169

Fast Feature Selec,on for Learning to Rank

• Experiments
• MSLR-Web10K (Fold1) and Yahoo LETOR
• By varying the subset sampled
• Results confirms Geng et al. [GLQL07]

• EvaluaMon Measures
• NDCG@10

• For small subsets (5%, 10%, 20%):
• Best performance by HCAS with “Single

Linkage”.
• StaMsMcally significant w.r.t. GAS
• Performance against the full model

Further Reading

• Pan et al. use boosted regression trees to investigate greedy and randomized wrapper
methods [PCA+09].

• Dang and Croft propose a wrapper method that uses best first search and coordinate
ascent to greedily partition a set of features into subsets to be selected [DC10].

• Hua et al. propose a feature selection method based on clustering: k-means is first used
to aggregate similar features, then the most relevant feature in each cluster is chosen to
form the final set [HZL+10].

• Laporte et al. [LFC+12] and Lai et al. [LPTY13] use embedded methods for selecting
features and building the ranking model at the same step, by solving a convex
optimization problem.

• Naini and Altingovde use greedy diversification methods to solve the feature selection
problem [NA14].

• Xu et al. solve the feature selection task by modifying the gradient boosting algorithm
used to learn forests of regression trees [XHW+14].

Optimizing Efficiency within
the Learning Process

Learning to Efficiently Rank [WLM10]

• Wang et al. propose a new cost function for learning models that
directly optimize the tradeoff metric: Efficiency-Effectiveness Tradeoff
Metric (EET)

L. Wang, J. Lin, and D. Metzler. Learning to efficiently rank. In Proc. SIGIR 2010.

• New efficiency metrics: constant, step, exponenOal
• Focus on linear feature-based ranking funcOons
• Learned funcOons show significant decreased

average query execuOon Omes

Cost-Sensi*ve Tree of Classifiers [XKWC13]

• Xu et al. observe that the test-time cost of a classifier is often

dominated by the computation required for feature extraction

• Cost-Sensitive Tree of Classifiers: each path extracts different features

and it is optimized for a specific sub-partition of the space

• Reduction of the average test-time complexity

• Input-dependent feature selection

• Dynamic allocation of time budgets: higher budgets for infrequent paths

• Experiments

• Yahoo LETOR dataset

• Quality vs Cost

Z. Xu, M. J. Kusner, K. Q. Weinberger, and M. Chen. Cost-sensitive tree of classifiers. In Proc. ICML, 2013.

Training Efficient Tree-Based Models for
Document Ranking [AL13]
• Asadi and Lin propose techniques for training GBRTs that have efficient run:me

characteris:cs.
• compact, shallow, and balanced trees yield faster predic:ons

• Cost-sensi:ve Tree Induc:on: jointly minimize the loss and the evalua:on cost
• Two strategies

• By directly modifying the node spliGng criterion during tree induc:on
• Allow split with maximum gain if it does not increase the maximum depth of the tree
• Find a node closer to the root which, if split, result in a gain larger than the discounted maximum gain

• Pruning while boos:ng with focus on tree depth and density
• Addi:onal stages compensate for the loss in effec:veness
• Collapse terminal nodes un:l the number of internal nodes reach a balanced tree

• Experiments on MSLR-WEB10K show that the pruning approach is superior.
• 40% decrease in predic:on latency with minimal reduc:on in final NDCG.

N. Asadi and J. Lin. Training efficient tree-based models for document ranking. In Proc. ECIR, 2013.

CLEAVER [LNO+16a]

• Lucchese et al. propose a pruning & re-weigh5ng
post-processing methodology
• Several pruning strategies

• random, last
• skip, low weights
• score loss
• quality loss

• Greedy line search strategy applied to tree weights
• Experiments on MART and LambdaMART

• MSLR-Web30K and Istella-S LETOR
• Quality loss: same effec5veness of the original model with up to 20% of the trees

C. Lucchese, F. M. Nardini, S. Orlando, R. Perego, F. Silvestri, and S. Trani. Post-learning op/miza/on of tree ensembles for
efficient ranking. In Proc. ACM SIGIR, 2016.

X-CLEAVER [LNO+18]

• Pruning and re-weighting during gradient boosting
1. Redundant trees are removed from the given ensemble
2. Weights of the remaining trees are fine-tuned by optimizing the desired

ranking quality metric, i.e., NDCG

• Same pruning strategies of CLEAVER
• Experiments on two publicly available datasets: MSN30K-1, Istella-S
• Pruning and re-weighting during learning are more effective than applying a

single post-learning optimization step
• X-CLEaVER allows to train even more compact forests with no loss in

performance

[LNO+18] C. Lucchese, F. M. Nardini, S. Orlando, R. Perego, F. Silvestri, and S. Trani. X-CLEAVER: Learning Ranking Ensembles
by Growing and Pruning Trees. ACM TIST, 2018.

DART [VGB15]

• Rashmi and Gilad-Bachrach propose to employ dropouts from NN
while learning a MART: DART
• Dropouts as a way to fight over-specialization
• Shrinkage helps but does not solve

K. V. Rashmi and R. Gilad-Bachrach. DART: Dropouts meet Multiple Additive Regression Trees. In PMLR, 2015

• DART differs from MART
• When learning a new tree, a subset of the

model is muted (random)
• NormalizaSon step when adding a new tree

to avoid overshoo;ng

• Experiments on MSLR-Web10K, NDCG@3
• Improvement over LambdaMART

491

X-DART [LNO+17]

• Lucchese et al. merge DART with pruning while training
• like DART, some trees are muted and this set is removed after fitting if needed

• Two good news
• X-DART builds even more compact models than DART
• Smaller models are less prone to overfitting: potential for higher effectiveness

• Three strategies for pruning trees
• Ratio, Fixed, Adaptive

[LNO+17] C. Lucchese, F. M. Nardini, S. Orlando, R. Perego, and S. Trani. X-DART: Blending dropout and pruning for efficient
learning to rank. In Proc. ACM SIGIR, 2017.

• Experiments on MSLR-Web30K and Istella-S
• X-DART (adaptive) provide statistically significant

improvements w.r.t. DART with up to 20% less trees
• Same effectiveness of DART with up to 40% less trees

Further Reading

• Xu et al. take into account the feature extraction cost during training to
explicitly minimize the cpu-time during testing [XWC12]
• Greedy Miser: extension of the stage-wise regression
• Evaluation on Yahoo LETOR
• Better efficiency-effectiveness trade-off w.r.t. stage-wise regression

• Peter et al. introduce the cost effective gradient boosting (GEGB) by taking
into account both the feature extraction and the node evaluation costs
• Trees are grown in best-first order: splits are evaluated for all current leaves and the

one with the best objection reduction is chosen.
• Experiments on Yahoo LETOR
• GEGB outperforms Greedy Miser

[XWC12] Z. Xu, K. Weinberger, O. Chapelle. The Greedy Miser: Learning under Test-time Budgets. In Proc. ICML, 2012.
[PDHN17] S. Peter, F. Diego, F. Hamprect, B. Nadler. Cost efficient Gradient Boosting. In Proc. NIPS, 2017.

