Learning to Rank in Theory and Practice From Gradient Boosting to Neural Networks and Unbiased Learning

Tutorial @ ACM SIGIR 2019 http://ltr-tutorial-sigir19.isti.cnr.it/

Session I: Efficiency/Effectiveness Trade-offs

Claudio Lucchese Ca' Foscari University of Venice Venice, Italy

Franco Maria Nardini HPC Lab, ISTI-CNR Pisa, Italy

Approximate Score Computation and Efficient Cascades

Early Exit Optimizations for Additive Machine Learned Ranking Systems [CZC+10]

- Why short-circuiting the scoring process in additive ensembles
 - for each query, few highly relevant documents and many irrelevant ones
 - most users view only the first few result pages
- Cambazoglu et al. introduce additive ensembles with early exits

- Four techniques
 - early exits using {Score, Capacity, Rank, Proximity} thresholds
- Evaluation on a state-of-the-art ML platform with GBRT
- With EPT, up to four times faster without loss in quality

[CZC+10] B. B. Cambazoglu, H. Zaragoza, O. Chapelle, J. Chen, C. Liao, Z. Zheng, and J. Degenhardt. *Early exit optimizations for additive machine learned ranking systems*. In Proc. ACM WSDM, 2010.

Efficient Cost-Aware Cascade Ranking in Multi-Stage Retrieval [CGBC17b]

- Cascade ranking model as a sequence of LtR models (*stages*)
 - ascending order of model complexity, only a fraction of documents in each stage advance to the next stage
- Chen *et al.* define the problem on how best to balance feature importance and feature costs in multi-stage cascade ranking models
 - three cost-aware heuristics to assign features to each stage
 - cost-aware L₁ regularization to learn each stage
 - Automatic feature selection while jointly optimize efficiency and effectiveness
- Experiments
 - Yahoo! Learning to Rank, gov
- Comparisons against [WLM11b]

[CGBC17b] R. Chen, L. Gallagher, R. Blanco, and J. S. Culpepper. *Efficient cost-aware cascade ranking in multi-stage retrieval*. In Proc. ACM SIGIR, 2017.

Efficient Cost-Aware Cascade Ranking in Multi-Stage Retrieval

	ERR@k			NDCG@k			P@k			
System	@5	@10	@20	@5	@10	@20	@5	@10	@20	Cost
Ground Truth Models										
GBDT-BL	0.4605	0.4751	0.4789	0.7448	0.7872	0.8279	0.8323	0. 7577	0.5967	15988
GBRT-BL	0.4598	0.4744	0.4782	0.7420	0.7852	0.8264	0.8322	0.7562	0.5962	15876
LambdaMART-BL	0.4526	0.4674	0.4712	0.7314	0.7768	0.8203	0.8330	0.7564	0.5964	15856
Cascade Models (including Baseline) ^a										
WLM-BL	0.3679	0.3876	0.3933	0.5886	0.6506	0.7088	0.7832	0.7171	0.5673	99
LM-C3-C	0.3950	0.4127	0.4175	0.6461	0.7067	0.7638	0.8086**	0.7364**	0.5856**	1871
LM-C3-E	0.3871	0.4039	0.4089	0.6503	0.7033	0.7618	0.8192**	0.7413**	0.5885**	1580
LM-C3-F	0.3876	0.4047	0.4093	0.6541	0.7113	0.7666	0.8226**	0.7483**	0.5915**	5278
GBDT-C3-C	0.4191	0.4357	0.4405	0.6535	0.7100	0.7631	0.7878*	0.7245**	0.5781**	1760
GBDT-C3-E	0.4264	0.4419	0.4466	0.6721	0.7180	0.7703	0.7942**	0.7241**	0.5778**	1535
GBDT-C3-F	0.4178	0.4350	0.4395	0.6554	0.7163	0.7672	0.7866	0.7310**	0.5819**	4953
GBRT-C3-C	0.4025	0.4203	0.4254	0.6304	0.6931	0.7488	0.7743	0.7168	0.5737**	1760
GBRT-C3-E	0.4100	0.4260	0.4313	0.6380	0.6867	0.7431	0.7697	0.7009	0.5637**	1535
GBRT-C3-F	0.4158	0.4332	0.4378	0.6479	0.7094	0.7612	0.7862	0.7294**	0.5802**	4949
LambdaMART-C3-C	0.4163	0.4332	0.4379	0.6577	0.7145	0.7673	0.7994**	0.7328**	0.5820^{**}	1760
LambdaMART-C3-E	0.4183	0.4346	0.4394	0.6629	0.7133	0.7671	0.7968**	0.7268**	0.5786**	1535
LambdaMART-C3-F	0.4353	0.4513	0.4557	0.6847	0.7354	0.7851	0.8060**	0.7379**	0.5847**	4929

Joint Optimization of Cascade Ranking Models [GCBC19]

- Cost-aware approaches for LtR exist but no generalization to cascade
 - Stage-wise ranker trained independently while strict dependency exists
- Novel method for learning a globally optimized cascade architecture
 - Backpropagation on top of a cost efficient gradient boosting [PDHN17]
- Three types of cascades
 - Independent chaining, Full chaining, Weak chaining
- Experiments
 - Yahoo! Learning to Rank and MSLR-WEB10K
- Globally learning the cascade achieves much better trade-offs between efficiency and effectiveness than previous approaches

[CGBC19] L. Gallagher, R. Chen, R. Blanco, J. S. Culpepper, *Joint Optimization of Cascade Ranking Models*. In Proc. ACM WSDM 2019.

Further Reading

- Wang *et al.* propose a cascade ranking model for efficient ranked retrieval [WLM11b]
 - Retrieval as a multi-stage progressive refinement problem, where each stage considers successively richer and more complex ranking models, but over successively smaller candidate document sets
 - Boosting algorithm (modified AdaRank) to jointly learn the model structure and the set of documents to prune at each stage
 - Experiments show the model is able to simultaneously achieve high effectiveness and fast retrieval
- Xu et al. propose to post-process classifiers to reduce their test time complexity [XKW+14a]
 - Focus on execution time and feature extraction cost with skewed classes
 - Reduction of the average cost of a classifier during test time by an order of magnitude on real-world Web search ranking data sets

[WLM11b] L. Wang, J. Lin, and D. Metzler. *A cascade ranking model for efficient ranked retrieval*. In Proc. ACM SIGIR, 2011. [XKW+14a] Z. Xu, M. J. Kusner, K. Q. Weinberger, M. Chen, and O. Chapelle. *Classifier cascades and trees for minimizing feature evaluation cost*. JMLR, 2014. Efficient Traversal of Tree-based Models

Efficient Traversal of Tree-based models

 From Yahoo! Learning to Rank Challenge Overview: "The winner proposal used a linear combination of 12 ranking models, 8 of which were LambdaMART boosted tree models, having each up to 3,000 trees" [YLTRC].

VPred [ALdV14]

[ALdV14] N. Asadi, J. Lin, and A. P. de Vries. *Runtime optimizations for tree-based machine learning models*. IEEE TKDE, 2014.

- Given a document, each node of a tree can be classified as True or False
- The exit leaf can be identified by knowing all (and only) the false nodes of a tree
- From per-tree scoring to per-feature scoring
 - Per-feature linear scan of thresholds in the forest

[LNO+15] C. Lucchese, F. M. Nardini, S. Orlando, R. Perego, N. Tonellotto, and R. Venturini. *Quickscorer: A fast algorithm to rank documents with additive ensembles of regression trees*. In Proc. ACM SIGIR, 2015.

- Per-feature linear scan of thresholds in the ensemble
- Let's suppose our document has #inlinks = 120.

- Bitmasks storing leafs "disappearing" if the node is False
- ANDing masks or nodes lead to th identification of leaf
 - Leftmost bit set to resulting mask
- Few operations insensitive to node processing order

- Public datasets: MSLR-Web10K and Yahoo LETOR
- Experiments on LambdaMART models: 1K, 5K, 10K, 20K trees and 8, 16, 32, 64 leaves.

	Λ	Number of trees/dataset								
Method		1,000		5,0	000	10,	000	20,000		
		MSN-1	Y!S1	MSN-1	Y!S1	MSN-1	Y!S1	MSN-1	Y!S1	
QS		2.2 (-)	4.3 (-)	10.5~(-)	14.3 $(-)$	20.0 (-)	25.4 (-)	40.5 (-)	48.1 (-)	
VPred	0	7.9~(3.6x)	8.5 (2.0x)	$40.2 (3.8 \mathrm{x})$	41.6~(2.9x)	80.5 (4.0x)	82.7 (3.3)	161.4 (4.0x)	164.8 (3.4x)	
IF-THEN-ELSE	0	8.2 (3.7x)	10.3 (2.4x)	81.0(7.7x)	85.8~(6.0x)	185.1 (9.3x)	185.8 (7.3x)	709.0 (17.5x)	772.2 (16.0x)	
STRUCT+		21.2 (9.6x)	23.1 (5.4x)	107.7 (10.3x)	112.6 (7.9x)	373.7 (18.7x)	390.8 (15.4x)	1150.4 (28.4x)	1141.6 (23.7x)	
QS		2.9 (-)	6.1 (-)	16.2 (-)	22.2 (-)	32.4 (-)	41.2 (-)	67.8 (-)	81.0 (-)	
VPred	16	16.0 (5.5 x)	16.5 (2.7x)	82.4 (5.0x)	82.8 (3.7x)	165.5 (5.1x)	165.2 (4.0x)	336.4 (4.9x)	336.1 (4.1x)	
IF-THEN-ELSE	10	18.0 (6.2x)	21.8 (3.6x)	126.9 (7.8x)	$130.0 (5.8 \mathrm{x})$	617.8 (19.0x)	406.6 (9.9x)	1767.3 (26.0x)	1711.4 (21.1x)	
STRUCT+		42.6 (14.7x)	41.0(6.7x)	424.3 (26.2x)	403.9 (18.2x)	1218.6 (37.6x)	1191.3 (28.9x)	2590.8 (38.2x)	2621.2 (32.4x)	
QS		5.2 $(-)$	9.7 (-)	27.1 $(-)$	34.3 (-)	59.6 (-)	70.3 (-)	155.8 (-)	160.1 (-)	
VPred	20	31.9~(6.1x)	31.6 (3.2x)	165.2 (6.0x)	162.2 (4.7x)	343.4 (5.7x)	336.6 (4.8x)	711.9 (4.5x)	694.8 (4.3x)	
IF-THEN-ELSE	52	34.5~(6.6x)	36.2 (3.7x)	300.9 (11.1x)	277.7 (8.0x)	1396.8 (23.4x)	1389.8 (19.8x)	3179.4 (20.4x)	3105.2 (19.4x)	
Struct+		69.1 (13.3x)	67.4 (6.9x)	928.6 (34.2x)	834.6 (24.3x)	1806.7 (30.3x)	1774.3 (25.2x)	4610.8 (29.6x)	4332.3 (27.0x)	
QS		9.5 (-)	15.1 $(-)$	56.3 $(-)$	66.9 (–)	157.5 $(-)$	159.4 (-)	425.1 $(-)$	343.7 (-)	
VPred	64	62.2~(6.5x)	57.6 (3.8x)	355.2 (6.3x)	334.9 (5.0x)	734.4 (4.7x)	706.8 (4.4x)	1309.7 (3.0x)	1420.7 (4.1x)	
IF-THEN-ELSE	04	55.9(5.9x)	55.1 (3.6x)	933.1 (16.6x)	935.3 (14.0x)	2496.5 (15.9x)	2428.6 (15.2x)	4662.0 (11.0x)	4809.6 (14.0x)	
Struct+		109.8 (11.6x)	116.8 (7.7x)	1661.7 (29.5x)	1554.6 (23.2x)	3040.7 (19.3x)	2937.3 (18.4x)	5437.0 (12.8x)	5456.4 (15.9x)	

Vectorized QuickScorer [LNO+16b]

- Instruction-level parallelism: SIMD capabilities of modern CPUs (SSE 4.2 and AVX 2)
- V-QuickScorer (vQS) exploits 128 bit registers (SSE 4.2) and 256 bit registers (AVX 2)
 - mask and score computation: with 32 leaves models, 4 docs in parallel (SSE 4.2), 8 docs in parallel (AVX 2)
- Public datasets: MSN10K, Yahoo LETOR and Istella
- Experiments on LambdaMART models: 1K, 10K trees and 32, 64 leaves

		Number of trees/dataset								
Λ	Method		1,000		10,000					
		MSN-1	Y!S1	istella	MSN-1	Y!S1	istella			
	QS	6.3~(-)	12.5~(-)	8.9 (-)	73.7~(-)	88.7~(-)	69.9~(-)			
32	vQS (SSE 4.2)	3.2~(2.0x)	5.2 (2.4x)	4.2 (2.1x)	46.2 (1.6x)	53.7 (1.7x)	38.6 (1.8x)			
	vQS (AVX-2)	2.6 (2.4x)	3.9 (3.2 x)	3.1 (2.9x)	39.6 (1.9x)	43.7 (2.0x)	30.7 (2.3x)			
	QS	11.9 (-)	18.8 (-)	14.3 (-)	183.7 (-)	182.7 (-)	162.2 (-)			
64	vQS (SSE 4.2)	10.2 (1.2x)	13.9(1.4x)	11.0 (1.3x)	173.1 (1.1x)	164.3 (1.1x)	132.2 (1.2x)			
	vQS (AVX-2)	7.9 (1.5x)	10.5 (1.8x)	8.0 (1.8x)	138.2 (1.3x)	140.0 (1.3x)	104.2 (1.6x)			

[LNO+16b] C. Lucchese, F. M. Nardini, S. Orlando, R. Perego, N. Tonellotto, and R. Venturini. *Exploiting CPU SIMD extensions to speed-up document scoring with tree ensembles*. In Proc. ACM SIGIR, 2016.

Multi-thread and GPU-QuickScorer [LLN+18]

- Thread-level parallelism
 - OpenMP to distribute vQS among several processing cores
- Speedup
 - 16 cores machine
 - 6.3x 14x over vQS, 20.7x 35x over QS
- QuickScorer on GPU
- The GPU performs both
 - mask and score computation
- Speedup
 - NVIDIA GTX 1080
 - Up to 102.6x over QS

[LLN+18] F. Lettich, C. Lucchese, F. M. Nardini, S. Orlando, R. Perego, N. Tonellotto, and R. Venturini. *Parallel Traversal of Large Ensembles of Decision Trees*. IEEE TPDS, 2018.

RapidScorer [YZZ+18]

- The data structure of QS and V-QS
 - linearly depends from the number of leaves of the trees (bitmasks)
 - for large trees, it is redundant and inefficient (cache misses) [JYT16]
- RapidScorer (RS)
 - industrial scenarios can exploit trees with a large number of leaves: up to 500
- Two solutions:
 - *Epitome*: 0's count not 1's while ANDing. Only store 0's
 - Collapse nodes of trees with same feature, threshold
- Experiments on two datasets: MSN10K and AdsCTR (not public)
 - Against QS and V-QS
 - Speedup ranging from 5.8x to 25x when using trees with more than 64 leaves

[YZZ+18] T. Ye, H. Zhou, W. Y. Zou, B. Gao, R. Zhang. *RapidScorer: Fast Tree Ensemble Evaluation by Maximizing Compactness in Data Level Parallelization*. In. Proc. ACM SIGKDD, 2018.

Further Reading

- Tang *et al.* [TJY14] investigates data traversal methods for fast score calculation with large ensembles of regression trees. Authors propose a 2D blocking scheme for better cache utilization.
 - Introduction of document and tree blocking for a better exploitation of cache layers of modern CPUs. The technique is used by Lucchese *et al.* [LNO+15].
- Jin *et al.* [JYT16] provide an analytical comparison of cache blocking methods. Moreover, they propose a technique to select a traversal method and its optimal blocking parameters for effective use of memory hierarchy.

[TJY14] X. Tang, X. Jin, and T. Yang. *Cache-conscious runtime optimization for ranking ensembles*. In Proc. ACM SIGIR, 2014. [JYT16] X. Jin, T. Yang, and X. Tang. *A comparison of cache blocking methods for fast execution of ensemble-based score computation*. In Proc. ACM SIGIR, 2016.

Thanks a lot for your attention!

Feature Selection

[DC10] V. Dang and B. Croft. *Feature selection for document ranking using best first search and coordinate ascent*. In ACM SIGIR workshop on feature generation and selection for information retrieval, 2010.

[GE03] I. Guyon and A. Elisseff. An introduction to variable and feature selection. JMLR, 2003.

[GLNP16] A. Gigli, C. Lucchese, F. M. Nardini, and R. Perego. *Fast feature selection for learning to rank*. In Proc. ACM ICTIR, 2016.

[HZL+10] G. Hua, M. Zhang, Y. Liu, S. Ma, and L. Ru. *Hierarchical feature selection for ranking*. In Proc. WWW 2010.

[LFC+12] L. Laporte, R. Flamary, S. Canu, S. D´ejean, and J. Mothe. *Non-convex regularizations for feature selection in ranking with sparse SVM*. Transactions on Neural Networks and Learning Systems, 10(10), 2012.

[LPTY13] H.J. Lai, Y. Pan, Y. Tang, and R. Yu. *FSMRank: Feature selection algorithm for learning to rank*. Transactions on Neural Networks and Learning Systems, 24(6), 2013.

[NA14] K. D. Naini and I. S. Altingovde. *Exploiting result diversification methods for feature selection in learning to rank*. In Proc. ECIR, 2014.

[PCA+09] F. Pan, T. Converse, D. Ahn, F. Salvetti, and G. Donato. *Feature selection for ranking using boosted trees*. In Proc. ACM CIKM, 2009.

[XHW+14] Z. Xu, G. Huang, K.Q. Weinberger, A.X. Zheng. Gradient boosted feature selection. In Proc. ACM SIGKDD 2014

Optimizing Efficiency within the Learning Process

[AL13] N. Asadi and J. Lin. *Training efficient tree-based models for document ranking*. In Proc. ECIR, 2013.

[LNO+16a] C. Lucchese, F. M. Nardini, S. Orlando, R. Perego, F. Silvestri, and S. Trani. *Post-learning optimization of tree ensembles for efficient ranking*. In Proc. ACM SIGIR, 2016.

[LNO+17] C. Lucchese, F. M. Nardini, S. Orlando, R. Perego, and S. Trani. *X-DART: Blending dropout and pruning for efficient learning to rank*. In Proc. ACM SIGIR, 2017.

[LNO+18] C. Lucchese, F. M. Nardini, S. Orlando, R. Perego, F. Silvestri, and S. Trani. *X-CLEAVER: Learning Ranking Ensembles by Growing and Pruning Trees*. ACM TIST, 2018.

[VGB15] R. Korlakai Vinayak and R. Gilad-Bachrach. DART: Dropouts meet Multiple Additive Regression Trees. In PMLR, 2015.

[WLM10] L. Wang, J. Lin, and D. Metzler. *Learning to efficiently rank*. In Proc. ACM SIGIR 2010.

[XKWC13] Z. Xu, M. J. Kusner, K. Q. Weinberger, and M. Chen. *Cost-sensitive tree of classifiers*. In Proc. ICML, 2013.

Approximate Score Computation and Efficient Cascades

[CGBC17b] R. Chen, L. Gallagher, R. Blanco, and J. S. Culpepper. *Efficient cost-aware cascade ranking in multi-stage retrieval*. In Proc. ACM SIGIR, 2017.

[CZC+10] B. B. Cambazoglu, H. Zaragoza, O. Chapelle, J. Chen, C. Liao, Z. Zheng, and J. Degenhardt. *Early exit optimizations for additive machine learned ranking systems*. In Proc. ACM WSDM, 2010.

[WLM11b] L. Wang, J. Lin, and D. Metzler. *A cascade ranking model for efficient ranked retrieval*. In Proc. ACM SIGIR, 2011.

[XKW+14a] Z. Xu, M. J. Kusner, K. Q. Weinberger, M. Chen, and O. Chapelle. *Classifier cascades and trees for minimizing feature evaluation cost*. JMLR, 2014.

Efficient Traversal of Tree-based Models

[ALdV14] N. Asadi, J. Lin, and A. P. de Vries. *Runtime optimizations for tree-based machine learning models*. IEEE TKDE, 2014.

[TJY14] X. Tang, X. Jin, and T. Yang. Cache-conscious runtime optimization for ranking ensembles. In Proc. ACM SIGIR, 2014.

[DLN+16] D. Dato, C. Lucchese, F. M. Nardini, S. Orlando, R. Perego, N. Tonellotto, and R. Venturini. *Fast ranking with additive ensembles of oblivious and non-oblivious regression trees*. ACM TOIS, 2016.

[JYT16] X. Jin, T. Yang, and X. Tang. A comparison of cache blocking methods for fast execution of ensemble-based score computation. In Proc. ACM SIGIR, 2016.

[LNO+15] C. Lucchese, F. M. Nardini, S. Orlando, R. Perego, N. Tonellotto, and R. Venturini. *Quickscorer: A fast algorithm to rank documents with additive ensembles of regression trees*. In Proc. ACM SIGIR, 2015.

[LNO+16b] C. Lucchese, F. M. Nardini, S. Orlando, R. Perego, N. Tonellotto, and R. Venturini. *Exploiting CPU SIMD extensions to speed-up document scoring with tree ensembles*. . In Proc. ACM SIGIR, 2016.

[LLN+18] F. Lettich, C. Lucchese, F. M. Nardini, S. Orlando, R. Perego, N. Tonellotto, and R. Venturini. *Parallel Traversal of Large Ensembles of Decision Trees*. IEEE TPDS, 2018.

[JYT16] X. Jin, T. Yang, and X. Tang. A comparison of cache blocking methods for fast execution of ensemble-based score computation. In Proc. ACM SIGIR, 2016.

[YZZ+18] T. Ye, H. Zhou, W. Y. Zou, B. Gao, R. Zhang. *RapidScorer: Fast Tree Ensemble Evaluation by Maximizing Compactness in Data Level Parallelization*. In. Proc. ACM SIGKDD, 2018.

Other

[QR] QuickRank, A C++ suite of Learning to Rank algorithms. <u>http://quickrank.isti.cnr.it</u>

[YLTRC] O. Chapelle and Y. Chang. Yahoo! learning to rank challenge overview. JMLR, 2011.

[CBY15] B. B. Cambazoglu and R. Baeza-Yates. *Scalability Challenges in Web Search Engines*. Morgan & Claypool Publishers, 2015.