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Approximate Score Computa0on 
and Efficient Cascades



Early Exit Op,miza,ons for Addi,ve Machine 
Learned Ranking Systems [CZC+10]
• Why short-circuiting the scoring process in additive ensembles
• for each query, few highly relevant documents and many irrelevant ones
• most users view only the first few result pages

• Cambazoglu et al. introduce additive ensembles with early exits

• Four techniques
• early exits using {Score, Capacity, Rank, Proximity} thresholds

• Evaluation on a state-of-the-art ML platform with GBRT
• With EPT, up to four times faster without loss in quality

[CZC+10] B. B. Cambazoglu, H. Zaragoza, O. Chapelle, J. Chen, C. Liao, Z. Zheng, and J. Degenhardt. Early exit optimizations for 
additive machine learned ranking systems. In Proc. ACM WSDM, 2010.



Efficient Cost-Aware Cascade Ranking in 
Mul8-Stage Retrieval [CGBC17b]
• Cascade ranking model as a sequence of LtR models (stages)

• ascending order of model complexity, only a fraction of documents in each 
stage advance to the next stage

• Chen et al. define the problem on how best to balance feature 
importance and feature costs in multi-stage cascade ranking models

• three cost-aware heuristics to assign features to each stage

• cost-aware L11 regularization to learn each stage

• Automatic feature selection while jointly optimize efficiency and effectiveness

• Experiments

• Yahoo! Learning to Rank, gov

• Comparisons against [WLM11b]

[CGBC17b] R. Chen, L. Gallagher, R. Blanco, and J. S. Culpepper. Efficient cost-aware cascade ranking in multi-stage retrieval. 
In Proc. ACM SIGIR, 2017.



Efficient Cost-Aware Cascade Ranking in 
Mul8-Stage Retrieval



Joint Op)miza)on of Cascade Ranking Models
[GCBC19] 
• Cost-aware approaches for LtR exist but no generalization to cascade
• Stage-wise ranker trained independently while strict dependency exists

• Novel method for learning a globally optimized cascade architecture
• Backpropagation on top of a cost efficient gradient boosting [PDHN17]

• Three types of cascades
• Independent chaining, Full chaining, Weak chaining

• Experiments
• Yahoo! Learning to Rank and MSLR-WEB10K

• Globally learning the cascade achieves much better trade-offs
between efficiency and effectiveness than previous approaches

[CGBC19] L. Gallagher, R. Chen, R. Blanco, J. S. Culpepper, Joint Optimization of Cascade Ranking Models. In Proc. ACM 
WSDM 2019.



Further Reading

• Wang et al. propose a cascade ranking model for efficient ranked retrieval 
[WLM11b] 
• Retrieval as a mul=-stage progressive refinement problem, where each stage 

considers successively richer and more complex ranking models, but over 
successively smaller candidate document sets

• Boos=ng algorithm (modified AdaRank) to jointly learn the model structure and the 
set of documents to prune at each stage

• Experiments show the model is able to simultaneously achieve high effec=veness 
and fast retrieval

• Xu et al. propose to post-process classifiers to reduce their test =me 
complexity [XKW+14a]
• Focus on execu=on =me and feature extrac=on cost with skewed classes
• Reduc=on of the average cost of a classifier during test =me by an order of 

magnitude on real-world Web search ranking data sets
[WLM11b] L. Wang, J. Lin, and D. Metzler. A cascade ranking model for efficient ranked retrieval. In Proc. ACM SIGIR, 2011.
[XKW+14a] Z. Xu, M. J. Kusner, K. Q. Weinberger, M. Chen, and O. Chapelle. Classifier cascades and trees for minimizing 
feature evaluation cost. JMLR, 2014.



Efficient Traversal of
Tree-based Models



Efficient Traversal of Tree-based models

• From Yahoo! Learning to Rank 
Challenge Overview: “The 
winner proposal used a linear 
combina4on of 12 ranking 
models, 8 of which were 
LambdaMART boosted tree 
models, having each up to 
3,000 trees” [YLTRC].
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If-Then-Else
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if (x[4] <= 50.1) {
// recurses on the left subtree
…
} else {
// recurses on the right subtree

if(x[3] <= -3.0)
result = 0.4;

else 
result = -1.4;

}

Need to store the structure of 
the tree

High branch mispredicNon rate

Low cache hit ratio
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Conditional Operators

Each tree is a weighted nested block of 
condi@onal operators:

(x[4] <= 50.1) ? leJ subtree : right subtree

Need to store the structure of 
the tree

High branch misprediction rate

Low cache hit ratio
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VPred [ALdV14]

double depth4(float* x, Node* nodes) {
int nodeId = 0;
nodeId = nodes->children[x[nodes[nodeId].fid] > nodes[nodeId].theta];
nodeId = nodes->children[x[nodes[nodeId].fid] > nodes[nodeId].theta];
nodeId = nodes->children[x[nodes[nodeId].fid] > nodes[nodeId].theta];
nodeId = nodes->children[x[nodes[nodeId].fid] > nodes[nodeId].theta];
return scores[nodeId];
}

• From control to data dependencies
• Output of a test as index to retrieve the 

next node to process
• The visit is statically un-rolled
• 16 docs at the same time

[ALdV14] N. Asadi, J. Lin, and A. P. de Vries. Runtime optimizations for tree-based machine learning models. IEEE TKDE, 2014.



QuickScorer [LNO+15]
• Given a document, each 

node of a tree can be 
classified as True or False

• The exit leaf can be 
iden9fied by knowing all 
(and only) the false nodes 
of a tree

• From per-tree scoring to 
per-feature scoring
• Per-feature linear scan of 

thresholds in the forest
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[LNO+15] C. Lucchese, F. M. Nardini, S. Orlando, R. Perego, N. Tonellotto, and R. Venturini. Quickscorer: A fast algorithm to 
rank documents with additive ensembles of regression trees. In Proc. ACM SIGIR, 2015.



QuickScorer [LNO+15]

…

# in-links of d < < 150 < 500< 10 < 50 < 100

length of d < < 10 < 50 < 100 < 1000

• Per-feature linear scan of thresholds in the ensemble
• Let’s suppose our document has #inlinks = 120.



QuickScorer [LNO+15]
• Bitmasks storing leafs 

“disappearing” if the 
node is False
• ANDing masks of false 

nodes lead to the 
identification of the exit 
leaf
• Leftmost bit set to 1 in the 

resulting mask

• Few operations 
insensitive to node 
processing order
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Cache Friendly
read-only sequential access, 

implementation of blocking strategies

CPU Friendly: fast bit-wise operations,
little branch mispredictions and control hazards



QuickScorer [LNO+15]

Table 2: Per-document scoring time in µs of QS, VPred, If-Then-Else and Struct+ on MSN-1 and Y!S1
datasets. Gain factors are reported in parentheses.

Method ⇤
Number of trees/dataset

1, 000 5, 000 10, 000 20, 000

MSN-1 Y!S1 MSN-1 Y!S1 MSN-1 Y!S1 MSN-1 Y!S1

QS

8

2.2 (–) 4.3 (–) 10.5 (–) 14.3 (–) 20.0 (–) 25.4 (–) 40.5 (–) 48.1 (–)

VPred 7.9 (3.6x) 8.5 (2.0x) 40.2 (3.8x) 41.6 (2.9x) 80.5 (4.0x) 82.7 (3.3) 161.4 (4.0x) 164.8 (3.4x)

If-Then-Else 8.2 (3.7x) 10.3 (2.4x) 81.0 (7.7x) 85.8 (6.0x) 185.1 (9.3x) 185.8 (7.3x) 709.0 (17.5x) 772.2 (16.0x)

Struct+ 21.2 (9.6x) 23.1 (5.4x) 107.7 (10.3x) 112.6 (7.9x) 373.7 (18.7x) 390.8 (15.4x) 1150.4 (28.4x) 1141.6 (23.7x)

QS

16

2.9 (–) 6.1 (–) 16.2 (–) 22.2 (–) 32.4 (–) 41.2 (–) 67.8 (–) 81.0 (–)

VPred 16.0 (5.5x) 16.5 (2.7x) 82.4 (5.0x) 82.8 (3.7x) 165.5 (5.1x) 165.2 (4.0x) 336.4 (4.9x) 336.1 (4.1x)

If-Then-Else 18.0 (6.2x) 21.8 (3.6x) 126.9 (7.8x) 130.0 (5.8x) 617.8 (19.0x) 406.6 (9.9x) 1767.3 (26.0x) 1711.4 (21.1x)

Struct+ 42.6 (14.7x) 41.0 (6.7x) 424.3 (26.2x) 403.9 (18.2x) 1218.6 (37.6x) 1191.3 (28.9x) 2590.8 (38.2x) 2621.2 (32.4x)

QS

32

5.2 (–) 9.7 (–) 27.1 (–) 34.3 (–) 59.6 (–) 70.3 (–) 155.8 (–) 160.1 (–)

VPred 31.9 (6.1x) 31.6 (3.2x) 165.2 (6.0x) 162.2 (4.7x) 343.4 (5.7x) 336.6 (4.8x) 711.9 (4.5x) 694.8 (4.3x)

If-Then-Else 34.5 (6.6x) 36.2 (3.7x) 300.9 (11.1x) 277.7 (8.0x) 1396.8 (23.4x) 1389.8 (19.8x) 3179.4 (20.4x) 3105.2 (19.4x)

Struct+ 69.1 (13.3x) 67.4 (6.9x) 928.6 (34.2x) 834.6 (24.3x) 1806.7 (30.3x) 1774.3 (25.2x) 4610.8 (29.6x) 4332.3 (27.0x)

QS

64

9.5 (–) 15.1 (–) 56.3 (–) 66.9 (–) 157.5 (–) 159.4 (–) 425.1 (–) 343.7 (–)

VPred 62.2 (6.5x) 57.6 (3.8x) 355.2 (6.3x) 334.9 (5.0x) 734.4 (4.7x) 706.8 (4.4x) 1309.7 (3.0x) 1420.7 (4.1x)

If-Then-Else 55.9 (5.9x) 55.1 (3.6x) 933.1 (16.6x) 935.3 (14.0x) 2496.5 (15.9x) 2428.6 (15.2x) 4662.0 (11.0x) 4809.6 (14.0x)

Struct+ 109.8 (11.6x) 116.8 (7.7x) 1661.7 (29.5x) 1554.6 (23.2x) 3040.7 (19.3x) 2937.3 (18.4x) 5437.0 (12.8x) 5456.4 (15.9x)

same trivially holds for Struct+. This means that the in-
terleaved traversal strategy ofQS needs to process less nodes
than in a traditional root-to-leaf visit. This mostly explains
the results achieved by QS.

As far as number of branches is concerned, we note that,
not surprisingly, QS and VPred are much more e�cient
than If-Then-Else and Struct+ with this respect. QS
has a larger total number of branches than VPred, which
uses scoring functions that are branch-free. However, those
branches are highly predictable, so that the mis-prediction
rate is very low, thus, confirming our claims in Section 3.

Observing again the timings in Table 2 we notice that, by
fixing the number of leaves, we have a super-linear growth
of QS’s timings when increasing the number of trees. For
example, since on MSN-1 with ⇤ = 64 and 1, 000 trees QS
scores a document in 9.5 µs, one would expect to score a
document 20 times slower, i.e., 190 µs, when the ensemble
size increases to 20, 000 trees. However, the reported timing
of QS in this setting is 425.1 µs, i.e., roughly 44 times slower
than with 1000 trees. This e↵ect is observable only when the
number of leaves ⇤ = {32, 64} and the number of trees is
larger than 5, 000. Table 3 relates this super-linear growth
to the numbers of L3 cache misses.

Considering the sizes of the arrays as reported in Table
1 in Section 3, we can estimate the minimum number of
trees that let the size of the QS’s data structure to exceed
the cache capacity, and, thus, the algorithm starts to have
more cache misses. This number is estimated in 6, 000 trees
when the number of leaves is 64. Thus, we expect that
the number of L3 cache miss starts increasing around this
number of trees. Possibly, this number is slightly larger,
because portions of the data structure may be infrequently
accessed at scoring time, due the the small fraction of false
nodes and associated bitvectors accessed by QS.

These considerations are further confirmed by Figure 4,
which shows the average per-tree per-document scoring time
(µs) and percentage of cache misses QS when scoring the
MSN-1 and the Y!S1 with ⇤ = 64 by varying the number of
trees. First, there exists a strong correlation between QS’s
timings and its number of L3 cache misses. Second, the

number of L3 cache misses starts increasing when dealing
with 9, 000 trees on MSN and 8, 000 trees on Y!S1.

BWQS: a block-wise variant of QS
The previous experiments suggest that improving the cache
e�ciency of QS may result in significant benefits. As in
Tang et al. [12], we can split the tree ensemble in disjoint
blocks of size ⌧ that are processed separately in order to let
the corresponding data structures fit into the faster levels of
the memory hierarchy. This way, we are essentially scoring
each document over each tree blocks that partition the origi-
nal ensemble, thus inheriting the e�ciency of QS on smaller
ensembles. Indeed, the size of the arrays required to score
the documents over a block of trees depends now on ⌧ in-
stead of |T | (see Table 1 in Section 3). We have, however,
to keep an array that stores the partial scoring computed so
far for each document.
The temporal locality of this approach can be improved by

allowing the algorithm to score blocks of documents together
over the same block of trees before moving to the next block
of documents. To allow the algorithm to score a block of �
documents in a single run we have to replicate in � copies the
array v. Obviously, this increases the space occupancy and
may result in a worse use of the cache. Therefore, we need
to find the best balance between the number of documents �
and the number of trees ⌧ to process in the body of a nested
loop that first runs over the blocks of trees (outer loop) and
then over the blocks of documents to score (inner loop).
This algorithm is called BlockWise-QS (BWQS) and its

e�ciency is discussed in the remaining part of this section.
Table 4 reports average per-document scoring time in µs

of algorithms QS, VPred, and BWQS. The experiments
were conducted on both the MSN-1 and Y!S1 datasets by
varying ⇤ and by fixing the number of trees to 20, 000. It
is worth noting that our QS algorithm can be thought as a
limit case of BWQS, where the blocks are trivially composed
of 1 document and the whole ensemble of trees. VPred
instead vectorizes the process and scores 16 documents at
the time over the entire ensemble. With BWQS the sizes of
document and tree blocks can be instead flexibly optimized
according to the cache parameters. Table 4 reports the best

• Public datasets: MSLR-Web10K and Yahoo LETOR
• Experiments on LambdaMART models: 1K, 5K, 10K, 20K trees and 8, 16, 32, 64 leaves.



Vectorized QuickScorer [LNO+16b]
• Instruction-level parallelism: SIMD capabilities of modern CPUs (SSE 4.2 and AVX 2)
• V-QuickScorer (vQS) exploits 128 bit registers (SSE 4.2) and 256 bit registers (AVX 2)

• mask and score computation: with 32 leaves models, 4 docs in parallel (SSE 4.2), 8 docs in parallel (AVX 2)

• Public datasets: MSN10K, Yahoo LETOR and Istella
• Experiments on LambdaMART models: 1K, 10K trees and 32, 64 leaves

[LNO+16b] C. Lucchese, F. M. Nardini, S. Orlando, R. Perego, N. Tonellotto, and R. Venturini. Exploiting CPU SIMD extensions to 
speed-up document scoring with tree ensembles. In Proc. ACM SIGIR, 2016.

Table 1: Per-document scoring time in µs of QS, vQS (SSE 4.2), vQS (AVX-2) on MSN-1, Y!S1, and istella datasets.
Speedups over the baseline QS are reported in parentheses.

⇤ Method
Number of trees/dataset

1,000 10,000

MSN-1 Y!S1 istella MSN-1 Y!S1 istella

32
QS 6.3 (–) 12.5 (–) 8.9 (–) 73.7 (–) 88.7 (–) 69.9 (–)

vQS (SSE 4.2) 3.2 (2.0x) 5.2 (2.4x) 4.2 (2.1x) 46.2 (1.6x) 53.7 (1.7x) 38.6 (1.8x)

vQS (AVX-2) 2.6 (2.4x) 3.9 (3.2x) 3.1 (2.9x) 39.6 (1.9x) 43.7 (2.0x) 30.7 (2.3x)

64
QS 11.9 (-) 18.8 (-) 14.3 (-) 183.7 (-) 182.7 (-) 162.2 (-)

vQS (SSE 4.2) 10.2 (1.2x) 13.9 (1.4x) 11.0 (1.3x) 173.1 (1.1x) 164.3 (1.1x) 132.2 (1.2x)

vQS (AVX-2) 7.9 (1.5x) 10.5 (1.8x) 8.0 (1.8x) 138.2 (1.3x) 140.0 (1.3x) 104.2 (1.6x)

partitioning. To the best of our knowledge, this is the largest
publicly available LtR dataset, particularly useful for large-
scale experiments on the e�ciency and scalability of LtR so-
lutions. In all the three datasets, feature vectors are labeled
with judgments ranging from 0 (irrelevant) to 4 (perfectly
relevant).

Experimental methodology. We trained �-MART [6]
models optimizing NDCG@10 on the three datasets, and
generated models with ⇤ = 32 or ⇤ = 64 leaves and with
|T |=1,000 or |T |=10,000 trees. We used the open source im-
plementation of �-MART by [2], however it is worth noting
that the results reported in this work are independent of the
training algorithm implementation. To provide a fair com-
parison, vQS was implemented by engineering the source
code of QS. In the following we reported the average per-
document scoring time averaged over 10 runs. The tests
were performed on a machine equipped with an Intel Xeon
CPU E5-2630 v3 clocked at 2.40GHz with 20 MB of cache
L3 and 64GB RAM.

E�ciency evaluation. Table 1 reports the average time
(in µs) for scoring a single document across the three datasets,
when varying both the number of trees and leaves in the en-
semble. The best improvements are achived with ⇤ = 32,
as vQS can use either 4- or 8-way parallelism for both fea-
ture predicate testing and bitvectors updating. When using
AVX-2, speed-ups range from 1.9x (for MSN-1 with 10,000
trees) to 3.2x (for Y!S1 with 1,000 trees). These are greatly
reduced woth SSE 4.2, with a maximum speedup of 2.4x for
the 1,000 trees model over Y!S1. As expected, performance
worsen with ⇤ = 64, with a maximum speed-up of 1.8x.
The lower improvement is due to ine�ciencies deriving from
additional processing required to align the 4-/8-way com-
parisons to the 2-/4-way conditional mask updates.
A final note regards the overheads of the vectorized code

during the scan of the ordered list of feature thresholds N�.
While QS stops as soon as the single document feature is
greater of the current threshold, vQS must continue as long
as at least one among the 4 or 8 documents evaluated si-
multaneously does not match the exit criterion. We instru-
mented the code to measure this di↵erence. The tests con-
ducted on MSN-1, with 10K trees and ⇤ = 64, confirmed
the hypothesis: to score a single document QS executes in
average 15.76 tests per tree, while this number increases
to 22.80 and 26.68 for the SSE 4.2 and AVX-2 versions of
vQS, respectively. In fact, we observed that while the score

computation step benefits significantly of the increased par-
allelism provided by AVX-2, the mask computation step ex-
hibits only a limited improvement, due to the additional
comparison costs mentioned above.

5. CONCLUSION

We discussed in depth the vectorization of QS, the state-
of-the-art algorithm for scoring documents with LtR tree
ensembles. Using SIMD capabilities of mainstream CPUs,
namely SSE 4.2 and AVX 2, vQS can process up to 8 doc-
uments in parallel, although there is a tradeo↵ due to the
possible increase in the number of operations carried out.
We also highlighted some features of these SIMD coproces-
sors, which force to re-design algorithms in non trivial ways.
The upcoming AVX-512 extension, due to wider regis-

ters, would allow to further increase the parallelism degree
up to 16 documents. Wider registers are not the only ben-
efit, since many new instructions will be available. One ex-
ample is mm512 lzcnt epi32, which counts the number of
leading zeros, i.e., the index of the first bit set to 1, in each
of the 16 sub-groups of 32 bits. This would allow to par-
allelize the code at lines 18-19 of Alg. 2, where the indexes
of 16 exit leaves in leafvalues would be computed simul-
taneously. Moreover, masked/predicated instructions would
allow to more easily pipeline comparision, update and store
operations.
Acknowledgements. This work was partially supported

by the EC H2020 Program INFRAIA-1-2014-2015 SoBig-
Data: Social Mining & Big Data Ecosystem (654024).
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Mul$-thread and GPU-QuickScorer [LLN+18]

• Thread-level parallelism
• OpenMP to distribute vQS among several processing cores

• Speedup
• 16 cores machine
• 6.3x – 14x over vQS, 20.7x – 35x over QS

• QuickScorer on GPU
• The GPU performs both

• mask and score computation
• Speedup

• NVIDIA GTX 1080
• Up to 102.6x over QS

[LLN+18] F. Lettich, C. Lucchese, F. M. Nardini, S. Orlando, R. Perego, N. Tonellotto, and R. Venturini. Parallel Traversal of Large 
Ensembles of Decision Trees . IEEE TPDS, 2018.



RapidScorer [YZZ+18]

• The data structure of QS and V-QS
• linearly depends from the number of leaves of the trees (bitmasks)
• for large trees, it is redundant and inefficient (cache misses) [JYT16]

• RapidScorer (RS)
• industrial scenarios can exploit trees with a large number of leaves: up to 500

• Two soluLons:
• Epitome: 0’s count not 1’s while ANDing. Only store 0’s
• Collapse nodes of trees with same feature, threshold

• Experiments on two datasets: MSN10K and AdsCTR (not public)
• Against QS and V-QS
• Speedup ranging from 5.8x to 25x when using trees with more than 64 leaves

[YZZ+18] T. Ye, H. Zhou, W. Y. Zou, B. Gao, R. Zhang. RapidScorer: Fast Tree Ensemble Evaluation by Maximizing Compactness 
in Data Level Parallelization. In. Proc. ACM SIGKDD, 2018.
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Further Reading

• Tang et al. [TJY14] investigates data traversal methods for fast score 
calculation with large ensembles of regression trees. Authors propose a 2D 
blocking scheme for better cache utilization.
• Introduction of document and tree blocking for a better exploitation of cache layers 

of modern CPUs. The technique is used by Lucchese et al. [LNO+15].

• Jin et al. [JYT16] provide an analytical comparison of cache blocking
methods. Moreover, they propose a technique to select a traversal method
and its optimal blocking parameters for effective use of memory hierarchy.

[TJY14] X. Tang, X. Jin, and T. Yang. Cache-conscious runtime optimization for ranking ensembles. In Proc. ACM SIGIR, 2014.
[JYT16] X. Jin, T. Yang, and X. Tang. A comparison of cache blocking methods for fast execution of ensemble-based score 
computation. In Proc. ACM SIGIR, 2016.



Thanks a lot for your attention!
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