
Learning to Rank in Theory and Prac3ce
From Gradient Boos3ng to Neural Networks and Unbiased Learning

Tutorial @ ACM SIGIR 2019
hIp://ltr-tutorial-sigir19.is3.cnr.it/

Session I: Efficiency/Effec3veness Trade-offs

Claudio Lucchese
Ca’ Foscari University of Venice

Venice, Italy

Franco Maria Nardini
HPC Lab, ISTI-CNR

Pisa, Italy

http://ltr-tutorial-sigir19.isti.cnr.it/

Approximate Score Computa0on
and Efficient Cascades

Early Exit Op,miza,ons for Addi,ve Machine
Learned Ranking Systems [CZC+10]
• Why short-circuiting the scoring process in additive ensembles
• for each query, few highly relevant documents and many irrelevant ones
• most users view only the first few result pages

• Cambazoglu et al. introduce additive ensembles with early exits

• Four techniques
• early exits using {Score, Capacity, Rank, Proximity} thresholds

• Evaluation on a state-of-the-art ML platform with GBRT
• With EPT, up to four times faster without loss in quality

[CZC+10] B. B. Cambazoglu, H. Zaragoza, O. Chapelle, J. Chen, C. Liao, Z. Zheng, and J. Degenhardt. Early exit optimizations for
additive machine learned ranking systems. In Proc. ACM WSDM, 2010.

Efficient Cost-Aware Cascade Ranking in
Mul8-Stage Retrieval [CGBC17b]
• Cascade ranking model as a sequence of LtR models (stages)

• ascending order of model complexity, only a fraction of documents in each
stage advance to the next stage

• Chen et al. define the problem on how best to balance feature
importance and feature costs in multi-stage cascade ranking models

• three cost-aware heuristics to assign features to each stage

• cost-aware L11 regularization to learn each stage

• Automatic feature selection while jointly optimize efficiency and effectiveness

• Experiments

• Yahoo! Learning to Rank, gov

• Comparisons against [WLM11b]

[CGBC17b] R. Chen, L. Gallagher, R. Blanco, and J. S. Culpepper. Efficient cost-aware cascade ranking in multi-stage retrieval.
In Proc. ACM SIGIR, 2017.

Efficient Cost-Aware Cascade Ranking in
Mul8-Stage Retrieval

Joint Op)miza)on of Cascade Ranking Models
[GCBC19]
• Cost-aware approaches for LtR exist but no generalization to cascade
• Stage-wise ranker trained independently while strict dependency exists

• Novel method for learning a globally optimized cascade architecture
• Backpropagation on top of a cost efficient gradient boosting [PDHN17]

• Three types of cascades
• Independent chaining, Full chaining, Weak chaining

• Experiments
• Yahoo! Learning to Rank and MSLR-WEB10K

• Globally learning the cascade achieves much better trade-offs
between efficiency and effectiveness than previous approaches

[CGBC19] L. Gallagher, R. Chen, R. Blanco, J. S. Culpepper, Joint Optimization of Cascade Ranking Models. In Proc. ACM
WSDM 2019.

Further Reading

• Wang et al. propose a cascade ranking model for efficient ranked retrieval
[WLM11b]
• Retrieval as a mul=-stage progressive refinement problem, where each stage

considers successively richer and more complex ranking models, but over
successively smaller candidate document sets

• Boos=ng algorithm (modified AdaRank) to jointly learn the model structure and the
set of documents to prune at each stage

• Experiments show the model is able to simultaneously achieve high effec=veness
and fast retrieval

• Xu et al. propose to post-process classifiers to reduce their test =me
complexity [XKW+14a]
• Focus on execu=on =me and feature extrac=on cost with skewed classes
• Reduc=on of the average cost of a classifier during test =me by an order of

magnitude on real-world Web search ranking data sets
[WLM11b] L. Wang, J. Lin, and D. Metzler. A cascade ranking model for efficient ranked retrieval. In Proc. ACM SIGIR, 2011.
[XKW+14a] Z. Xu, M. J. Kusner, K. Q. Weinberger, M. Chen, and O. Chapelle. Classifier cascades and trees for minimizing
feature evaluation cost. JMLR, 2014.

Efficient Traversal of
Tree-based Models

Efficient Traversal of Tree-based models

• From Yahoo! Learning to Rank
Challenge Overview: “The
winner proposal used a linear
combina4on of 12 ranking
models, 8 of which were
LambdaMART boosted tree
models, having each up to
3,000 trees” [YLTRC].

0.4 1.4

1.5 3.2

2.0

0.5 3.1

7.1

50.1:F4

10.1:F1 -3.0:F3

-1.0:F3

3.0:F8

0.1:F6

0.2:F2
2.0

If-Then-Else

0.4 -1.4

1.5 3.2

2.0

0.5 -3.1

7.1

50.1:F4

10.1:F1 -3.0:F3

-1.0:F3

3.0:F8

0.1:F6

0.2:F2

if (x[4] <= 50.1) {
// recurses on the left subtree
…
} else {
// recurses on the right subtree

if(x[3] <= -3.0)
result = 0.4;

else
result = -1.4;

}

Need to store the structure of
the tree

High branch mispredicNon rate

Low cache hit ratio

0.4 -1.4

1.5 3.2

2.0

0.5 -3.1

7.1

50.1:F4

10.1:F1 -3.0:F3

-1.0:F3

3.0:F8

0.1:F6

0.2:F2

Conditional Operators

Each tree is a weighted nested block of
condi@onal operators:

(x[4] <= 50.1) ? leJ subtree : right subtree

Need to store the structure of
the tree

High branch misprediction rate

Low cache hit ratio

0.4 -1.4

1.5 3.2

2.0

0.5 -3.1

7.1

50.1:F4

10.1:F1 -3.0:F3

-1.0:F3

3.0:F8

0.1:F6

0.2:F2

VPred [ALdV14]

double depth4(float* x, Node* nodes) {
int nodeId = 0;
nodeId = nodes->children[x[nodes[nodeId].fid] > nodes[nodeId].theta];
nodeId = nodes->children[x[nodes[nodeId].fid] > nodes[nodeId].theta];
nodeId = nodes->children[x[nodes[nodeId].fid] > nodes[nodeId].theta];
nodeId = nodes->children[x[nodes[nodeId].fid] > nodes[nodeId].theta];
return scores[nodeId];
}

• From control to data dependencies
• Output of a test as index to retrieve the

next node to process
• The visit is statically un-rolled
• 16 docs at the same time

[ALdV14] N. Asadi, J. Lin, and A. P. de Vries. Runtime optimizations for tree-based machine learning models. IEEE TKDE, 2014.

QuickScorer [LNO+15]
• Given a document, each

node of a tree can be
classified as True or False

• The exit leaf can be
iden9fied by knowing all
(and only) the false nodes
of a tree

• From per-tree scoring to
per-feature scoring
• Per-feature linear scan of

thresholds in the forest

0.4 -1.4

1.5 3.2

2.0

0.5 -3.1

7.1

50.1:F4

10.1:F1 -3.0:F3

-1.0:F3

3.0:F8

0.1:F6

0.2:F2

0
1 2

3

4 5

6 7

? ?

[LNO+15] C. Lucchese, F. M. Nardini, S. Orlando, R. Perego, N. Tonellotto, and R. Venturini. Quickscorer: A fast algorithm to
rank documents with additive ensembles of regression trees. In Proc. ACM SIGIR, 2015.

QuickScorer [LNO+15]

…

in-links of d < < 150 < 500< 10 < 50 < 100

length of d < < 10 < 50 < 100 < 1000

• Per-feature linear scan of thresholds in the ensemble
• Let’s suppose our document has #inlinks = 120.

QuickScorer [LNO+15]
• Bitmasks storing leafs

“disappearing” if the
node is False
• ANDing masks of false

nodes lead to the
identification of the exit
leaf
• Leftmost bit set to 1 in the

resulting mask

• Few operations
insensitive to node
processing order

0.4 -1.4

1.5 3.2

2.0

0.5 -3.1

7.1

50.1:F4

10.1:F1 -3.0:F3

-1.0:F3

3.0:F8

0.1:F6

0.2:F2

0

1 2

3

4 5

6 7

?
? ?

0 0 0 0 0 0 1 1

0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 1

1 1 1 0 1 1 1 10 1 1 1 1 1 1 1

1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1

Cache Friendly
read-only sequential access,

implementation of blocking strategies

CPU Friendly: fast bit-wise operations,
little branch mispredictions and control hazards

QuickScorer [LNO+15]

Table 2: Per-document scoring time in µs of QS, VPred, If-Then-Else and Struct+ on MSN-1 and Y!S1
datasets. Gain factors are reported in parentheses.

Method ⇤
Number of trees/dataset

1, 000 5, 000 10, 000 20, 000

MSN-1 Y!S1 MSN-1 Y!S1 MSN-1 Y!S1 MSN-1 Y!S1

QS

8

2.2 (–) 4.3 (–) 10.5 (–) 14.3 (–) 20.0 (–) 25.4 (–) 40.5 (–) 48.1 (–)

VPred 7.9 (3.6x) 8.5 (2.0x) 40.2 (3.8x) 41.6 (2.9x) 80.5 (4.0x) 82.7 (3.3) 161.4 (4.0x) 164.8 (3.4x)

If-Then-Else 8.2 (3.7x) 10.3 (2.4x) 81.0 (7.7x) 85.8 (6.0x) 185.1 (9.3x) 185.8 (7.3x) 709.0 (17.5x) 772.2 (16.0x)

Struct+ 21.2 (9.6x) 23.1 (5.4x) 107.7 (10.3x) 112.6 (7.9x) 373.7 (18.7x) 390.8 (15.4x) 1150.4 (28.4x) 1141.6 (23.7x)

QS

16

2.9 (–) 6.1 (–) 16.2 (–) 22.2 (–) 32.4 (–) 41.2 (–) 67.8 (–) 81.0 (–)

VPred 16.0 (5.5x) 16.5 (2.7x) 82.4 (5.0x) 82.8 (3.7x) 165.5 (5.1x) 165.2 (4.0x) 336.4 (4.9x) 336.1 (4.1x)

If-Then-Else 18.0 (6.2x) 21.8 (3.6x) 126.9 (7.8x) 130.0 (5.8x) 617.8 (19.0x) 406.6 (9.9x) 1767.3 (26.0x) 1711.4 (21.1x)

Struct+ 42.6 (14.7x) 41.0 (6.7x) 424.3 (26.2x) 403.9 (18.2x) 1218.6 (37.6x) 1191.3 (28.9x) 2590.8 (38.2x) 2621.2 (32.4x)

QS

32

5.2 (–) 9.7 (–) 27.1 (–) 34.3 (–) 59.6 (–) 70.3 (–) 155.8 (–) 160.1 (–)

VPred 31.9 (6.1x) 31.6 (3.2x) 165.2 (6.0x) 162.2 (4.7x) 343.4 (5.7x) 336.6 (4.8x) 711.9 (4.5x) 694.8 (4.3x)

If-Then-Else 34.5 (6.6x) 36.2 (3.7x) 300.9 (11.1x) 277.7 (8.0x) 1396.8 (23.4x) 1389.8 (19.8x) 3179.4 (20.4x) 3105.2 (19.4x)

Struct+ 69.1 (13.3x) 67.4 (6.9x) 928.6 (34.2x) 834.6 (24.3x) 1806.7 (30.3x) 1774.3 (25.2x) 4610.8 (29.6x) 4332.3 (27.0x)

QS

64

9.5 (–) 15.1 (–) 56.3 (–) 66.9 (–) 157.5 (–) 159.4 (–) 425.1 (–) 343.7 (–)

VPred 62.2 (6.5x) 57.6 (3.8x) 355.2 (6.3x) 334.9 (5.0x) 734.4 (4.7x) 706.8 (4.4x) 1309.7 (3.0x) 1420.7 (4.1x)

If-Then-Else 55.9 (5.9x) 55.1 (3.6x) 933.1 (16.6x) 935.3 (14.0x) 2496.5 (15.9x) 2428.6 (15.2x) 4662.0 (11.0x) 4809.6 (14.0x)

Struct+ 109.8 (11.6x) 116.8 (7.7x) 1661.7 (29.5x) 1554.6 (23.2x) 3040.7 (19.3x) 2937.3 (18.4x) 5437.0 (12.8x) 5456.4 (15.9x)

same trivially holds for Struct+. This means that the in-
terleaved traversal strategy ofQS needs to process less nodes
than in a traditional root-to-leaf visit. This mostly explains
the results achieved by QS.

As far as number of branches is concerned, we note that,
not surprisingly, QS and VPred are much more e�cient
than If-Then-Else and Struct+ with this respect. QS
has a larger total number of branches than VPred, which
uses scoring functions that are branch-free. However, those
branches are highly predictable, so that the mis-prediction
rate is very low, thus, confirming our claims in Section 3.

Observing again the timings in Table 2 we notice that, by
fixing the number of leaves, we have a super-linear growth
of QS’s timings when increasing the number of trees. For
example, since on MSN-1 with ⇤ = 64 and 1, 000 trees QS
scores a document in 9.5 µs, one would expect to score a
document 20 times slower, i.e., 190 µs, when the ensemble
size increases to 20, 000 trees. However, the reported timing
of QS in this setting is 425.1 µs, i.e., roughly 44 times slower
than with 1000 trees. This e↵ect is observable only when the
number of leaves ⇤ = {32, 64} and the number of trees is
larger than 5, 000. Table 3 relates this super-linear growth
to the numbers of L3 cache misses.

Considering the sizes of the arrays as reported in Table
1 in Section 3, we can estimate the minimum number of
trees that let the size of the QS’s data structure to exceed
the cache capacity, and, thus, the algorithm starts to have
more cache misses. This number is estimated in 6, 000 trees
when the number of leaves is 64. Thus, we expect that
the number of L3 cache miss starts increasing around this
number of trees. Possibly, this number is slightly larger,
because portions of the data structure may be infrequently
accessed at scoring time, due the the small fraction of false
nodes and associated bitvectors accessed by QS.

These considerations are further confirmed by Figure 4,
which shows the average per-tree per-document scoring time
(µs) and percentage of cache misses QS when scoring the
MSN-1 and the Y!S1 with ⇤ = 64 by varying the number of
trees. First, there exists a strong correlation between QS’s
timings and its number of L3 cache misses. Second, the

number of L3 cache misses starts increasing when dealing
with 9, 000 trees on MSN and 8, 000 trees on Y!S1.

BWQS: a block-wise variant of QS
The previous experiments suggest that improving the cache
e�ciency of QS may result in significant benefits. As in
Tang et al. [12], we can split the tree ensemble in disjoint
blocks of size ⌧ that are processed separately in order to let
the corresponding data structures fit into the faster levels of
the memory hierarchy. This way, we are essentially scoring
each document over each tree blocks that partition the origi-
nal ensemble, thus inheriting the e�ciency of QS on smaller
ensembles. Indeed, the size of the arrays required to score
the documents over a block of trees depends now on ⌧ in-
stead of |T | (see Table 1 in Section 3). We have, however,
to keep an array that stores the partial scoring computed so
far for each document.
The temporal locality of this approach can be improved by

allowing the algorithm to score blocks of documents together
over the same block of trees before moving to the next block
of documents. To allow the algorithm to score a block of �
documents in a single run we have to replicate in � copies the
array v. Obviously, this increases the space occupancy and
may result in a worse use of the cache. Therefore, we need
to find the best balance between the number of documents �
and the number of trees ⌧ to process in the body of a nested
loop that first runs over the blocks of trees (outer loop) and
then over the blocks of documents to score (inner loop).
This algorithm is called BlockWise-QS (BWQS) and its

e�ciency is discussed in the remaining part of this section.
Table 4 reports average per-document scoring time in µs

of algorithms QS, VPred, and BWQS. The experiments
were conducted on both the MSN-1 and Y!S1 datasets by
varying ⇤ and by fixing the number of trees to 20, 000. It
is worth noting that our QS algorithm can be thought as a
limit case of BWQS, where the blocks are trivially composed
of 1 document and the whole ensemble of trees. VPred
instead vectorizes the process and scores 16 documents at
the time over the entire ensemble. With BWQS the sizes of
document and tree blocks can be instead flexibly optimized
according to the cache parameters. Table 4 reports the best

• Public datasets: MSLR-Web10K and Yahoo LETOR
• Experiments on LambdaMART models: 1K, 5K, 10K, 20K trees and 8, 16, 32, 64 leaves.

Vectorized QuickScorer [LNO+16b]
• Instruction-level parallelism: SIMD capabilities of modern CPUs (SSE 4.2 and AVX 2)
• V-QuickScorer (vQS) exploits 128 bit registers (SSE 4.2) and 256 bit registers (AVX 2)

• mask and score computation: with 32 leaves models, 4 docs in parallel (SSE 4.2), 8 docs in parallel (AVX 2)

• Public datasets: MSN10K, Yahoo LETOR and Istella
• Experiments on LambdaMART models: 1K, 10K trees and 32, 64 leaves

[LNO+16b] C. Lucchese, F. M. Nardini, S. Orlando, R. Perego, N. Tonellotto, and R. Venturini. Exploiting CPU SIMD extensions to
speed-up document scoring with tree ensembles. In Proc. ACM SIGIR, 2016.

Table 1: Per-document scoring time in µs of QS, vQS (SSE 4.2), vQS (AVX-2) on MSN-1, Y!S1, and istella datasets.
Speedups over the baseline QS are reported in parentheses.

⇤ Method
Number of trees/dataset

1,000 10,000

MSN-1 Y!S1 istella MSN-1 Y!S1 istella

32
QS 6.3 (–) 12.5 (–) 8.9 (–) 73.7 (–) 88.7 (–) 69.9 (–)

vQS (SSE 4.2) 3.2 (2.0x) 5.2 (2.4x) 4.2 (2.1x) 46.2 (1.6x) 53.7 (1.7x) 38.6 (1.8x)

vQS (AVX-2) 2.6 (2.4x) 3.9 (3.2x) 3.1 (2.9x) 39.6 (1.9x) 43.7 (2.0x) 30.7 (2.3x)

64
QS 11.9 (-) 18.8 (-) 14.3 (-) 183.7 (-) 182.7 (-) 162.2 (-)

vQS (SSE 4.2) 10.2 (1.2x) 13.9 (1.4x) 11.0 (1.3x) 173.1 (1.1x) 164.3 (1.1x) 132.2 (1.2x)

vQS (AVX-2) 7.9 (1.5x) 10.5 (1.8x) 8.0 (1.8x) 138.2 (1.3x) 140.0 (1.3x) 104.2 (1.6x)

partitioning. To the best of our knowledge, this is the largest
publicly available LtR dataset, particularly useful for large-
scale experiments on the e�ciency and scalability of LtR so-
lutions. In all the three datasets, feature vectors are labeled
with judgments ranging from 0 (irrelevant) to 4 (perfectly
relevant).

Experimental methodology. We trained �-MART [6]
models optimizing NDCG@10 on the three datasets, and
generated models with ⇤ = 32 or ⇤ = 64 leaves and with
|T |=1,000 or |T |=10,000 trees. We used the open source im-
plementation of �-MART by [2], however it is worth noting
that the results reported in this work are independent of the
training algorithm implementation. To provide a fair com-
parison, vQS was implemented by engineering the source
code of QS. In the following we reported the average per-
document scoring time averaged over 10 runs. The tests
were performed on a machine equipped with an Intel Xeon
CPU E5-2630 v3 clocked at 2.40GHz with 20 MB of cache
L3 and 64GB RAM.

E�ciency evaluation. Table 1 reports the average time
(in µs) for scoring a single document across the three datasets,
when varying both the number of trees and leaves in the en-
semble. The best improvements are achived with ⇤ = 32,
as vQS can use either 4- or 8-way parallelism for both fea-
ture predicate testing and bitvectors updating. When using
AVX-2, speed-ups range from 1.9x (for MSN-1 with 10,000
trees) to 3.2x (for Y!S1 with 1,000 trees). These are greatly
reduced woth SSE 4.2, with a maximum speedup of 2.4x for
the 1,000 trees model over Y!S1. As expected, performance
worsen with ⇤ = 64, with a maximum speed-up of 1.8x.
The lower improvement is due to ine�ciencies deriving from
additional processing required to align the 4-/8-way com-
parisons to the 2-/4-way conditional mask updates.
A final note regards the overheads of the vectorized code

during the scan of the ordered list of feature thresholds N�.
While QS stops as soon as the single document feature is
greater of the current threshold, vQS must continue as long
as at least one among the 4 or 8 documents evaluated si-
multaneously does not match the exit criterion. We instru-
mented the code to measure this di↵erence. The tests con-
ducted on MSN-1, with 10K trees and ⇤ = 64, confirmed
the hypothesis: to score a single document QS executes in
average 15.76 tests per tree, while this number increases
to 22.80 and 26.68 for the SSE 4.2 and AVX-2 versions of
vQS, respectively. In fact, we observed that while the score

computation step benefits significantly of the increased par-
allelism provided by AVX-2, the mask computation step ex-
hibits only a limited improvement, due to the additional
comparison costs mentioned above.

5. CONCLUSION

We discussed in depth the vectorization of QS, the state-
of-the-art algorithm for scoring documents with LtR tree
ensembles. Using SIMD capabilities of mainstream CPUs,
namely SSE 4.2 and AVX 2, vQS can process up to 8 doc-
uments in parallel, although there is a tradeo↵ due to the
possible increase in the number of operations carried out.
We also highlighted some features of these SIMD coproces-
sors, which force to re-design algorithms in non trivial ways.
The upcoming AVX-512 extension, due to wider regis-

ters, would allow to further increase the parallelism degree
up to 16 documents. Wider registers are not the only ben-
efit, since many new instructions will be available. One ex-
ample is mm512 lzcnt epi32, which counts the number of
leading zeros, i.e., the index of the first bit set to 1, in each
of the 16 sub-groups of 32 bits. This would allow to par-
allelize the code at lines 18-19 of Alg. 2, where the indexes
of 16 exit leaves in leafvalues would be computed simul-
taneously. Moreover, masked/predicated instructions would
allow to more easily pipeline comparision, update and store
operations.
Acknowledgements. This work was partially supported

by the EC H2020 Program INFRAIA-1-2014-2015 SoBig-
Data: Social Mining & Big Data Ecosystem (654024).

6. REFERENCES

[1] N. Asadi, J. Lin, and A. P. de Vries. Runtime
optimizations for tree-based machine learning models.
IEEE Transactions on Knowledge and Data

Engineering, 26(9):2281–2292, 2014.
[2] G. Capannini, C. Lucchese, F. M. Nardini, S. Orlando,

R. Perego, and N. Tonellotto. Quality versus E�ciency
in Document Scoring with Learning-to-Rank Models.
Information Processing and Management, 2016.

[3] J. H. Friedman. Greedy function approximation: a
gradient boosting machine. Annals of Statistics, 2001.

[4] C. Lucchese, F. M. Nardini, S. Orlando, R. Perego,
N. Tonellotto, and R. Venturini. Quickscorer: A fast
algorithm to rank documents with additive ensembles
of regression trees. In Proc. of the 38th ACM SIGIR

Conference, pages 73–82, 2015.
[5] O. Polychroniou, A. Raghavan, and K. A. Ross.

Rethinking simd vectorization for in-memory databases.
In Proc. of the 2015 ACM SIGMOD Conference, pages
1493–1508, New York, NY, USA, 2015.

[6] Q. Wu, C. J. Burges, K. M. Svore, and J. Gao.
Adapting boosting for information retrieval measures.
Information Retrieval, 2010.

Mul$-thread and GPU-QuickScorer [LLN+18]

• Thread-level parallelism
• OpenMP to distribute vQS among several processing cores

• Speedup
• 16 cores machine
• 6.3x – 14x over vQS, 20.7x – 35x over QS

• QuickScorer on GPU
• The GPU performs both

• mask and score computation
• Speedup

• NVIDIA GTX 1080
• Up to 102.6x over QS

[LLN+18] F. Lettich, C. Lucchese, F. M. Nardini, S. Orlando, R. Perego, N. Tonellotto, and R. Venturini. Parallel Traversal of Large
Ensembles of Decision Trees . IEEE TPDS, 2018.

RapidScorer [YZZ+18]

• The data structure of QS and V-QS
• linearly depends from the number of leaves of the trees (bitmasks)
• for large trees, it is redundant and inefficient (cache misses) [JYT16]

• RapidScorer (RS)
• industrial scenarios can exploit trees with a large number of leaves: up to 500

• Two soluLons:
• Epitome: 0’s count not 1’s while ANDing. Only store 0’s
• Collapse nodes of trees with same feature, threshold

• Experiments on two datasets: MSN10K and AdsCTR (not public)
• Against QS and V-QS
• Speedup ranging from 5.8x to 25x when using trees with more than 64 leaves

[YZZ+18] T. Ye, H. Zhou, W. Y. Zou, B. Gao, R. Zhang. RapidScorer: Fast Tree Ensemble Evaluation by Maximizing Compactness
in Data Level Parallelization. In. Proc. ACM SIGKDD, 2018.

0.4 -1.4

50.1:F4

-3.0:F3

?
?

1 1 1 1 1 1 0 1

0 0 0 0 0 0 1 1

Further Reading

• Tang et al. [TJY14] investigates data traversal methods for fast score
calculation with large ensembles of regression trees. Authors propose a 2D
blocking scheme for better cache utilization.
• Introduction of document and tree blocking for a better exploitation of cache layers

of modern CPUs. The technique is used by Lucchese et al. [LNO+15].

• Jin et al. [JYT16] provide an analytical comparison of cache blocking
methods. Moreover, they propose a technique to select a traversal method
and its optimal blocking parameters for effective use of memory hierarchy.

[TJY14] X. Tang, X. Jin, and T. Yang. Cache-conscious runtime optimization for ranking ensembles. In Proc. ACM SIGIR, 2014.
[JYT16] X. Jin, T. Yang, and X. Tang. A comparison of cache blocking methods for fast execution of ensemble-based score
computation. In Proc. ACM SIGIR, 2016.

Thanks a lot for your attention!

References
Feature Selection

[DC10] V. Dang and B. Cro9. Feature selec+on for document ranking using best first search and coordinate ascent. In ACM

SIGIR workshop on feature generaEon and selecEon for informaEon retrieval, 2010.

[GE03] I. Guyon and A. Elisseff. An introduc+on to variable and feature selec+on. JMLR, 2003.

[GLNP16] A. Gigli, C. Lucchese, F. M. Nardini, and R. Perego. Fast feature selec+on for learning to rank. In Proc. ACM ICTIR,

2016.

[HZL+10] G. Hua, M. Zhang, Y. Liu, S. Ma, and L. Ru. Hierarchical feature selec+on for ranking. In Proc. WWW 2010.

[LFC+12] L. Laporte, R. Flamary, S. Canu, S. D ́ejean, and J. Mothe. Non-convex regulariza+ons for feature selec+on in ranking
with sparse SVM. TransacEons on Neural Networks and Learning Systems, 10(10), 2012.

[LPTY13] H.J. Lai, Y. Pan, Y. Tang, and R. Yu. FSMRank: Feature selec+on algorithm for learning to rank. TransacEons on Neural

Networks and Learning Systems, 24(6), 2013.

[NA14] K. D. Naini and I. S. AlEngovde. Exploi+ng result diversifica+on methods for feature selec+on in learning to rank. In

Proc. ECIR, 2014.

[PCA+09] F. Pan, T. Converse, D. Ahn, F. Salve`, and G. Donato. Feature selec+on for ranking using boosted trees. In Proc. ACM

CIKM, 2009.

[XHW+14] Z. Xu, G. Huang, K.Q. Weinberger, A.X. Zheng. Gradient boosted feature selecEon. In Proc. ACM SIGKDD 2014

References

[AL13] N. Asadi and J. Lin. Training efficient tree-based models for document ranking. In Proc. ECIR, 2013.

[LNO+16a] C. Lucchese, F. M. Nardini, S. Orlando, R. Perego, F. Silvestri, and S. Trani. Post-learning op8miza8on
of tree ensembles for efficient ranking. In Proc. ACM SIGIR, 2016.

[LNO+17] C. Lucchese, F. M. Nardini, S. Orlando, R. Perego, and S. Trani. X-DART: Blending dropout and pruning
for efficient learning to rank. In Proc. ACM SIGIR, 2017.

[LNO+18] C. Lucchese, F. M. Nardini, S. Orlando, R. Perego, F. Silvestri, and S. Trani. X-CLEAVER: Learning
Ranking Ensembles by Growing and Pruning Trees. ACM TIST, 2018.

[VGB15] R. Korlakai Vinayak and R. Gilad-Bachrach. DART: Dropouts meet Mul8ple Addi8ve Regression Trees. In
PMLR, 2015.

[WLM10] L. Wang, J. Lin, and D. Metzler. Learning to efficiently rank. In Proc. ACM SIGIR 2010.

[XKWC13] Z. Xu, M. J. Kusner, K. Q. Weinberger, and M. Chen. Cost-sensi8ve tree of classifiers. In Proc. ICML,
2013.

Optimizing Efficiency within the Learning Process

References
Approximate Score Computa0on and Efficient Cascades

[CGBC17b] R. Chen, L. Gallagher, R. Blanco, and J. S. Culpepper. Efficient cost-aware cascade ranking in multi-
stage retrieval. In Proc. ACM SIGIR, 2017.

[CZC+10] B. B. Cambazoglu, H. Zaragoza, O. Chapelle, J. Chen, C. Liao, Z. Zheng, and J. Degenhardt. Early exit
optimizations for additive machine learned ranking systems. In Proc. ACM WSDM, 2010.

[WLM11b] L. Wang, J. Lin, and D. Metzler. A cascade ranking model for efficient ranked retrieval. In Proc. ACM
SIGIR, 2011.

[XKW+14a] Z. Xu, M. J. Kusner, K. Q. Weinberger, M. Chen, and O. Chapelle. Classifier cascades and trees for
minimizing feature evaluation cost. JMLR, 2014.

References
Efficient Traversal of Tree-based Models

[ALdV14] N. Asadi, J. Lin, and A. P. de Vries. Run$me op$miza$ons for tree-based machine learning models. IEEE TKDE, 2014.

[TJY14] X. Tang, X. Jin, and T. Yang. Cache-conscious run$me op$miza$on for ranking ensembles. In Proc. ACM SIGIR, 2014.

[DLN+16] D. Dato, C. Lucchese, F. M. Nardini, S. Orlando, R. Perego, N. TonelloSo, and R. Venturini. Fast ranking with addi$ve
ensembles of oblivious and non-oblivious regression trees. ACM TOIS, 2016.

[JYT16] X. Jin, T. Yang, and X. Tang. A comparison of cache blocking methods for fast execu$on of ensemble-based score
computa$on. In Proc. ACM SIGIR, 2016.

[LNO+15] C. Lucchese, F. M. Nardini, S. Orlando, R. Perego, N. TonelloSo, and R. Venturini. Quickscorer: A fast algorithm to
rank documents with addi$ve ensembles of regression trees. In Proc. ACM SIGIR, 2015.

[LNO+16b] C. Lucchese, F. M. Nardini, S. Orlando, R. Perego, N. TonelloSo, and R. Venturini. Exploi$ng CPU SIMD extensions to
speed-up document scoring with tree ensembles. . In Proc. ACM SIGIR, 2016.

[LLN+18] F. LeVch, C. Lucchese, F. M. Nardini, S. Orlando, R. Perego, N. TonelloSo, and R. Venturini. Parallel Traversal of Large
Ensembles of Decision Trees. IEEE TPDS, 2018.

[JYT16] X. Jin, T. Yang, and X. Tang. A comparison of cache blocking methods for fast execu$on of ensemble-based score
computa$on. In Proc. ACM SIGIR, 2016.

[YZZ+18] T. Ye, H. Zhou, W. Y. Zou, B. Gao, R. Zhang. RapidScorer: Fast Tree Ensemble Evalua$on by Maximizing Compactness in
Data Level Paralleliza$on. In. Proc. ACM SIGKDD, 2018.

References
Other

[QR] QuickRank, A C++ suite of Learning to Rank algorithms. http://quickrank.isti.cnr.it

[YLTRC] O. Chapelle and Y. Chang. Yahoo! learning to rank challenge overview. JMLR, 2011.

[CBY15] B. B. Cambazoglu and R. Baeza-Yates. Scalability Challenges in Web Search Engines. Morgan & Claypool
Publishers, 2015.

http://quickrank.isti.cnr.it/

