
TF-Ranking
Neural Learning to Rank using TensorFlow

SIGIR 2019
Rama Kumar Pasumarthi

Sebastian Bruch
Michael Bendersky

Xuanhui Wang

Google Research

Talk Outline
1. Motivation

2. Library overview

3. Empirical results

4. Hands-on tutorial

Motivation

TensorFlow Ranking
● First announced in Google AI blog, Dec. 5th 2018

● The first deep learning library for learning-to-rank at scale

● Available on Github under tensorflow/ranking

● 1100+ stars, 150+ forks

● Actively maintained & developed by the TF-Ranking team

● Compatible with TensorFlow Ecosystem, e.g., TensorFlow Serving

https://github.com/tensorflow/ranking

Example I: Search in Gmail

5

Example II: Recommendation in Google Drive

6

General Problem Statement

Problem Learning a scoring function f* to sort a list of examples

● Input: List of examples (with Context)
● Output: Scoring function f* that produces the most optimal example ordering

○ Can be parameterized by linear functions, SVM, GBRTs, Neural Networks

Formally

Training sample with relevance labels

Choose f* to minimize empirical loss

Most generally

8

Document List

256 neurons

128 neurons

64 neurons

The perfect ranking

Pointwise Loss (Classification/Regression)

9

Doc A

256 neurons

128 neurons

64 neurons

Probability that A is clicked

Pairwise Loss

10

Doc A

Probability that A is better than B

Doc B

256 neurons

128 neurons

64 neurons

256 neurons

128 neurons

64 neurons

Listwise Loss

11

Probability of the permutation A > B > C
(Plackett-Luce model)

Doc A

256 neurons

128 neurons

64 neurons

Doc B

256 neurons

128 neurons

64 neurons

Doc C

256 neurons

128 neurons

64 neurons

Overview

A unified deep learning
 library for learning-to-rank.

Supported Components
● Supports multivariate scoring functions

● Supports pointwise/pairwise/listwise losses

● Supports popular ranking metrics
○ Mean Reciprocal Rank (MRR)
○ Normalized Discounted Cumulative Gain (NDCG)

● Weighted losses and metrics to support unbiased learning-to-rank

● Supports sparse/embedding features

Supported Scoring Functions
● Univariate - scoring function f(x) scores each document separately (most

existing LTR methods)

● Bivariate - scoring function f(x1,x2) scores a pair of documents

● Multivariate - scoring functions f(x1, …, xm) jointly scores a group of m
documents

Groupwise Multivariate Scoring Functions

16

"Learning Groupwise Multivariate Scoring Functions Using Deep Neural Networks"
Ai et al., ICTIR 2019 (to appear)

Supported Loss Examples (Binary Labels)
(Pointwise) Sigmoid Cross Entropy

(Pairwise) Logistic Loss

(Listwise) Softmax Loss (aka ListNET)

"An Analysis of the Softmax Cross Entropy Loss for Learning-to-Rank with Binary Relevance"
Bruch et al., ICTIR 2019 (to appear)

ApproxNDCG - Ranking Metric Approximation

"A general approximation framework for direct optimization of information retrieval measures"
Qin et al., Information Retrieval, 2010

"Revisiting Approximate Metric Optimization in the Age of Deep Neural Networks"
Bruch et al., SIGIR 2019

Empirical Results

Datasets

Dataset # queries

MSLR-Web30k,
Yahoo! LTRC

~30K Public Search dense features

MS-Marco ~800K Public Q&A sparse features

Quick Access ~30M Internal Recommendation dense features

Gmail Search ~300M Internal Search dense features
sparse features

MSLR-Web30k and Yahoo! LTRC

"Revisiting Approximate Metric Optimization in the Age of Deep Neural Networks"
Bruch et al., SIGIR 2019

Preliminary Results on MS-Marco

Embedding Embedding

Query Document

Self Attention Self Attention

Attention

Concat

Dot Product

Feed
Forward

● TF-Ranking enables faster iterations over
ideas to build ranking-appropriate modules

● An early attempt is illustrated to the right
○ Trained with Softmax Cross Entropy (ListNet) loss, it

achieves MRR of .244 on the (held-out) “dev” set.
■ [Official Baseline] BM25 -- .167
■ [Official Baseline] Duet V2 -- .243
■ Best non-BERT result -- .318

Gmail Search

Gmail Search ΔMRR ΔARP ΔNDCG

Sigmoid Cross Entropy
(Pointwise)

– – –

Logistic Loss (Pairwise) +1.52 +1.64 +1.00

Softmax Cross Entropy
(Listwise)

+1.80 +1.88 +1.57

Model performance with various loss functions

"TF-Ranking: Scalable TensorFlow Library for Learning-to-Rank"
Pasumarthi et al., KDD 2019 (to appear)

Quick Access

Quick Access ΔMRR ΔARP ΔNDCG

Sigmoid Cross Entropy
(Pointwise)

– – –

Logistic Loss (Pairwise) +0.70 +1.86 +0.35

Softmax Cross Entropy
(Listwise)

+1.08 +1.88 +1.05

Model performance with various loss functions

"TF-Ranking: Scalable TensorFlow Library for Learning-to-Rank"
Pasumarthi et al., KDD 2019 (to appear)

Gmail Search: Incorporating Sparse Features

Gmail Search ΔMRR ΔARP ΔNDCG

Sigmoid Cross
Entropy (Pointwise)

+6.06 +6.87 +3.92

Logistic Loss
(Pairwise)

+5.40 +6.25 +3.51

Softmax Cross
Entropy (Listwise)

+5.69 +6.25 +3.70

Model performance with various loss functions

"TF-Ranking: Scalable TensorFlow Library for Learning-to-Rank"
Pasumarthi et al., KDD 2019 (to appear)

Hands-on Tutorial

Ecosystem

CPU GPU Android iOS ...

TensorFlow Distributed Execution Engine

C++ OpsPython Ops ...

tf.data

datasets Ranking Building Blocks

TensorFlow CoreLayers Feature Columns

Feature
Transforms

Scoring
Function

Model BuilderRanking
Head

losses metrics

27

TF-Ranking Architecture

28

Steps to get started
● Go to git.io/tf-ranking-demo
● Open the notebook in colaboratory

○ Make sure the URL starts with “colab.research.google.com”

● Click “Connect” to connect to a hosted runtime.
○ This is where the code runs, and the files reside.

● Open “Runtime” and select “Run All”
● Scroll down to the section on “Train and evaluate the ranker”, to see the

training in execution

http://git.io/tf-ranking-demo

git.io/tf-ranking-demo

http://git.io/tf-ranking-demo

"Course Homework"
● Try running the colab with a different loss function

○ Use one of the losses listed at: git.io/tfr-losses
○ Advanced: Implement your own custom loss function

● Try running with an additional metric
○ You can use Average Relevance Position, listed at: git.io/tfr-metrics
○ Advanced: Implement a metric that is a linear combination of two existing metrics

● Explore different neural networks for scoring function
○ Increase the number of layers: when does it start to overfit?

● Try running TF-Ranking on your ranking problem
○ Let us know your experience by filing an issue on github!

http://git.io/tfr-losses
http://git.io/tfr-metrics
https://github.com/tensorflow/ranking/issues

