
Tutorial:	TF-Ranking	for	sparse	featuresTutorial:	TF-Ranking	for	sparse	features



This	tutorial	is	an	end-to-end	walkthrough	of	training	a	TensorFlow	Ranking	(TF-Ranking)
neural	network	model	which	incorporates	sparse	textual	features.

TF-Ranking	is	a	library	for	solving	large	scale	ranking	problems	using	deep	learning.	TF-
Ranking	can	handle	heterogeneous	dense	and	sparse	features,	and	scales	up	to	millions	of
data	points.	For	more	details,	please	read	the	technical	paper	published	on	

.
arXiv

(https://arxiv.org/abs/1812.00073)

Run	in	Google	Colab
(https://colab.research.google.com/github/tensor�ow/ranking/blob/master/tensor�ow_ranking/examples/handling_sparse_features.ipynb)

View	source	on	Git
(https://github.com

https://arxiv.org/abs/1812.00073


MotivationMotivation
This	tutorial	demonstrates	how	to	build	ranking	estimators	over	sparse	features,	such	as
textual	data.	Textual	data	is	prevalent	in	several	settings	for	ranking,	and	plays	a	signi�cant
role	is	relevance	judgment	by	a	user.

In	Search	and	Question	Answering	tasks,	queries	and	document	titles	are	examples	of
textual	information.	In	Recommendation	task,	the	titles	of	the	items	and	their	descriptions
contain	textual	information.

Hence	it	is	important	for	LTR	(Learning-to-Rank)	models	to	effectively	incorporate	textual
features.



Data	Formats	and	a	Ranking	TaskData	Formats	and	a	Ranking	Task



Data	Formats	for	RankingData	Formats	for	Ranking
For	representing	ranking	data,	

	are	extensible	structures	suitable	for	storing	data	in	a	serialized	format,	either
locally	or	in	a	distributed	manner.

Ranking	usually	consists	of	features	corresponding	to	each	of	the	examples	being	sorted.	In
addition,	features	related	to	query,	user	or	session	are	also	useful	for	ranking.	We	refer	to
these	as	context	features,	as	these	are	independent	of	the	examples.

We	use	the	popular	
proto	to	represent	the	features	for	context,	and	each	of	the	examples.	We	create	a	new
format	for	ranking	data,	Example	in	Example	(EIE),	to	store	context	as	a	serialized
tf.Example	proto	and	the	list	of	examples	to	be	ranked	as	a	list	of	serialized	tf.Example
protos.

protobuffers	(https://developers.google.com/protocol-
buffers/)

tf.Example	(https://www.tensor�ow.org/tutorials/load_data/tf_records)

https://developers.google.com/protocol-buffers/
https://www.tensorflow.org/tutorials/load_data/tf_records


ANTIQUE:	A	Question	Answering	DatasetANTIQUE:	A	Question	Answering	Dataset
	is	a	publicly	available	dataset	for	open-domain

non-factoid	question	answering,	collected	over	Yahoo!	answers.

Each	question	has	a	list	of	answers,	whose	relevance	are	graded	on	a	scale	of	1-5.

This	dataset	is	a	suitable	one	for	learning-to-rank	scenario.	The	dataset	is	split	into	2206
queries	for	training	and	200	queries	for	testing.	For	more	details,	please	read	the	tehcnical
paper	on	 .

ANTIQUE	(http://hamedz.ir/resources/)

arXiv	(https://arxiv.org/pdf/1905.08957.pdf)

Download	training,	test	data	and	vocabulary	�le.

In [0]: !wget -O "/tmp/vocab.txt" "http://ciir.cs.umass.edu/downloads/Antique/tf-ranking/v
ocab.txt"
!wget -O "/tmp/train.tfrecords" "http://ciir.cs.umass.edu/downloads/Antique/tf-ran
king/train.tfrecords"
!wget -O "/tmp/test.tfrecords" "http://ciir.cs.umass.edu/downloads/Antique/tf-rank
ing/test.tfrecords"

http://hamedz.ir/resources/
https://arxiv.org/pdf/1905.08957.pdf


Dependencies	and	Global	VariablesDependencies	and	Global	Variables
Let	us	start	by	importing	libraries	that	will	be	used	throughout	this	Notebook.	We	also
enable	the	"eager	execution"	mode	for	convenience	and	demonstration	purposes.

In [0]: import six
import os
import numpy as np 

try: 
 import tensorflow as tf
except ImportError: 
 print('Installing TensorFlow.  This will take a minute, ignore the warnings.') 
 !pip install -q tensorflow 
 import tensorflow as tf 

try: 
 import tensorflow_ranking as tfr
except ImportError: 
   !pip install -q tensorflow_ranking 
   import tensorflow_ranking as tfr 

tf.enable_eager_execution()
tf.executing_eagerly()
tf.set_random_seed(1234)
tf.logging.set_verbosity(tf.logging.INFO)



Here	we	de�ne	the	train	and	test	paths,	along	with	model	hyperparameters.

In [0]: # Store the paths to files containing training and test instances.
_TRAIN_DATA_PATH = "/tmp/train.tfrecords"
_TEST_DATA_PATH = "/tmp/test.tfrecords" 

# Store the vocabulary path for query and document tokens.
_VOCAB_PATH = "/tmp/vocab.txt" 

# The maximum number of documents per query in the dataset.
# Document lists are apdded or truncated to this size.
_LIST_SIZE = 50 

# The document relevance label.
_LABEL_FEATURE = "relevance" 

# Padding labels are set negative so that the corresponding examples can be
# ignored in loss and metrics.
_PADDING_LABEL = -1 

# Learning rate for optimizer.
_LEARNING_RATE = 0.05 

# Parameters to the scoring function.
_BATCH_SIZE = 32
_HIDDEN_LAYER_DIMS = ["64", "32", "16"]
_DROPOUT_RATE = 0.8
_GROUP_SIZE = 1  # Pointwise scoring. 

# Location of model directory and number of training steps.
_MODEL_DIR = "/tmp/ranking_model_dir"
_NUM_TRAIN_STEPS = 15 * 1000



Components	of	a	Ranking	EstimatorComponents	of	a	Ranking	Estimator



The	overall	components	of	a	Ranking	Estimator	are	shown	below.

The	key	components	of	the	library	are:

1.	Input	Reader
2.	Tranform	Function
3.	Scoring	Function
4.	Ranking	Losses
5.	Ranking	Metrics
6.	Ranking	Head
7.	Model	Builder

These	are	described	in	more	details	in	the	following	sections.



TensorFlow	Ranking	ArchitectureTensorFlow	Ranking	Architecture



Specifying	Features	via	Feature	ColumnsSpecifying	Features	via	Feature	Columns
	are	TensorFlow

abstractions	that	are	used	to	capture	rich	information	about	each	feature.	It	allows	for	easy
transformations	for	a	diverse	range	of	raw	features	and	for	interfacing	with	Estimators.

Consistent	with	our	input	formats	for	ranking,	such	as	EIE	format,	we	create	feature
columns	for	context	features	and	example	features.

Feature	Columns	(https://www.tensor�ow.org/guide/feature_columns)

In [0]: _EMBEDDING_DIMENSION = 20 

def context_feature_columns(): 
 """Returns context feature names to column definitions.""" 
 sparse_column = tf.feature_column.categorical_column_with_vocabulary_file( 
     key="query_tokens", 
     vocabulary_file=_VOCAB_PATH) 
 query_embedding_column = tf.feature_column.embedding_column( 
     sparse_column, _EMBEDDING_DIMENSION) 
 return {"query_tokens": query_embedding_column} 

def example_feature_columns(): 
 """Returns the example feature columns.""" 
 sparse_column = tf.feature_column.categorical_column_with_vocabulary_file( 
     key="document_tokens", 
     vocabulary_file=_VOCAB_PATH) 
 document_embedding_column = tf.feature_column.embedding_column( 
     sparse_column, _EMBEDDING_DIMENSION) 
 return {"document_tokens": document_embedding_column}

https://www.tensorflow.org/guide/feature_columns


Reading	Input	Data	using	Reading	Input	Data	using	input_fn
The	input	reader	reads	in	data	from	persistent	storage	to	produce	raw	dense	and	sparse
tensors	of	appropriate	type	for	each	feature.	Example	features	are	represented	by	3-D
tensors	(where	dimensions	correspond	to	queries,	examples	and	feature	values).	Context
features	are	represented	by	2-D	tensors	(where	dimensions	correspond	to	queries	and
feature	values).

In [0]: def input_fn(path, num_epochs=None): 
 context_feature_spec = tf.feature_column.make_parse_example_spec( 
       context_feature_columns().values()) 
 label_column = tf.feature_column.numeric_column( 
       _LABEL_FEATURE, dtype=tf.int64, default_value=_PADDING_LABEL) 
 example_feature_spec = tf.feature_column.make_parse_example_spec( 
       list(example_feature_columns().values()) + [label_column]) 
 dataset = tfr.data.build_ranking_dataset( 
       file_pattern=path, 
       data_format=tfr.data.EIE, 
       batch_size=_BATCH_SIZE, 
       list_size=_LIST_SIZE, 
       context_feature_spec=context_feature_spec, 
       example_feature_spec=example_feature_spec, 
       reader=tf.data.TFRecordDataset, 
       shuffle=False, 
       num_epochs=num_epochs) 
 features = tf.data.make_one_shot_iterator(dataset).get_next() 
 label = tf.squeeze(features.pop(_LABEL_FEATURE), axis=2) 
 label = tf.cast(label, tf.float32) 
 return features, label



Feature	Transformations	with	Feature	Transformations	with	transform_fn
The	transform	function	takes	in	the	raw	dense	or	sparse	features	from	the	input	reader,
applies	suitable	transformations	to	return	dense	representations	for	each	faeture.	This	is
important	before	passing	these	features	to	a	neural	network,	as	neural	networks	layers
usually	take	dense	features	as	inputs.

The	transform	function	handles	any	custom	feature	transformations	de�ned	by	the	user.
For	handling	sparse	features,	like	text	data,	we	provide	an	easy	utlity	to	create	shared
embeddings,	based	on	the	feature	columns.

In [0]: def make_transform_fn(): 
 def _transform_fn(features, mode): 
   """Defines transform_fn.""" 
   example_name = next(six.iterkeys(example_feature_columns())) 
   input_size = tf.shape(input=features[example_name])[1] 
   context_features, example_features = tfr.feature.encode_listwise_features( 
       features=features, 
       input_size=input_size, 
       context_feature_columns=context_feature_columns(), 
       example_feature_columns=example_feature_columns(), 
       mode=mode, 
       scope="transform_layer") 

   return context_features, example_features 
 return _transform_fn



Feature	Interactions	using	Feature	Interactions	using	scoring_fn
Next,	we	turn	to	the	scoring	function	which	is	arguably	at	the	heart	of	a	TF	Ranking	model.
The	idea	is	to	compute	a	relevance	score	for	a	(set	of)	query-document	pair(s).	The	TF-
Ranking	model	will	use	training	data	to	learn	this	function.

Here	we	formulate	a	scoring	function	using	a	feed	forward	network.	The	function	takes	the
features	of	a	single	example	(i.e.,	query-document	pair)	and	produces	a	relevance	score.



In [0]: def make_score_fn(): 
 """Returns a scoring function to build `EstimatorSpec`.""" 

 def _score_fn(context_features, group_features, mode, params, config): 
   """Defines the network to score a group of documents.""" 
   with tf.compat.v1.name_scope("input_layer"): 
     context_input = [ 
         tf.compat.v1.layers.flatten(context_features[name]) 
         for name in sorted(context_feature_columns()) 
     ] 
     group_input = [ 
         tf.compat.v1.layers.flatten(group_features[name]) 
         for name in sorted(example_feature_columns()) 
     ] 
     input_layer = tf.concat(context_input + group_input, 1) 

   is_training = (mode == tf.estimator.ModeKeys.TRAIN) 
   cur_layer = input_layer 
   cur_layer = tf.compat.v1.layers.batch_normalization( 
     cur_layer, 
     training=is_training, 
     momentum=0.99) 

   for i, layer_width in enumerate(int(d) for d in _HIDDEN_LAYER_DIMS): 
     cur_layer = tf.compat.v1.layers.dense(cur_layer, units=layer_width) 
     cur_layer = tf.compat.v1.layers.batch_normalization( 
       cur_layer, 
       training=is_training, 
       momentum=0.99) 
     cur_layer = tf.nn.relu(cur_layer) 
     cur_layer = tf.compat.v1.layers.dropout( 
         inputs=cur_layer, rate=_DROPOUT_RATE, training=is_training) 
   logits = tf.compat.v1.layers.dense(cur_layer, units=_GROUP_SIZE) 
   return logits 

 return _score_fn



Losses,	Metrics	and	Ranking	HeadLosses,	Metrics	and	Ranking	Head



Evaluation	MetricsEvaluation	Metrics
We	have	provided	an	implementation	of	several	popular	Information	Retrieval	evaluation
metrics	in	the	TF	Ranking	library,	which	are	shown	

The	user	can	also	de�ne	a	custom	evaluation	metric,	as	shown	in	the	description	below.

here
(https://github.com/tensor�ow/ranking/blob/d8c2e2e64a92923f1448cf5302c92a80bb469a

https://github.com/tensorflow/ranking/blob/d8c2e2e64a92923f1448cf5302c92a80bb469a20/tensorflow_ranking/python/metrics.py#L32


Ranking	LossesRanking	Losses
We	provide	several	popular	ranking	loss	functions	as	part	of	the	library,	which	are	shown

The	user	can	also	de�ne	a	custom	loss	function,	similar	to	ones	in	tfr.losses.

here
(https://github.com/tensor�ow/ranking/blob/d8c2e2e64a92923f1448cf5302c92a80bb469a

In [0]: # Define a loss function. To find a complete list of available
# loss functions or to learn how to add your own custom function
# please refer to the tensorflow_ranking.losses module. 

_LOSS = tfr.losses.RankingLossKey.APPROX_NDCG_LOSS
loss_fn = tfr.losses.make_loss_fn(_LOSS)

https://github.com/tensorflow/ranking/blob/d8c2e2e64a92923f1448cf5302c92a80bb469a20/tensorflow_ranking/python/losses.py#L35


Ranking	HeadRanking	Head
In	the	Estimator	work�ow,	Head	is	an	abstraction	that	encapsulates	losses	and
corresponding	metrics.	Head	easily	interfaces	with	the	Estimator,	needing	the	user	to
de�ne	a	scoring	function	and	specify	losses	and	metric	computation.

In [0]: optimizer = tf.compat.v1.train.AdagradOptimizer( 
   learning_rate=_LEARNING_RATE) 

def _train_op_fn(loss): 
 """Defines train op used in ranking head.""" 
 update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) 
 minimize_op = optimizer.minimize( 
     loss=loss, global_step=tf.compat.v1.train.get_global_step()) 
 train_op = tf.group([update_ops, minimize_op]) 
 return train_op 

ranking_head = tfr.head.create_ranking_head( 
     loss_fn=loss_fn, 
     eval_metric_fns=eval_metric_fns(), 
     train_op_fn=_train_op_fn)



Putting	It	All	Together	in	a	Model	BuilderPutting	It	All	Together	in	a	Model	Builder
We	are	now	ready	to	put	all	of	the	components	above	together	and	create	an	 Estimator
that	can	be	used	to	train	and	evaluate	a	model.

In [0]: model_fn = tfr.model.make_groupwise_ranking_fn( 
         group_score_fn=make_score_fn(), 
         transform_fn=make_transform_fn(), 
         group_size=_GROUP_SIZE, 
         ranking_head=ranking_head)

In [0]: def train_and_eval_fn(): 
 """Train and eval function used by `tf.estimator.train_and_evaluate`.""" 
 run_config = tf.estimator.RunConfig( 
     save_checkpoints_steps=1000) 
 ranker = tf.estimator.Estimator( 
     model_fn=model_fn, 
     model_dir=_MODEL_DIR, 
     config=run_config) 

 train_input_fn = lambda: input_fn(_TRAIN_DATA_PATH) 
 eval_input_fn = lambda: input_fn(_TEST_DATA_PATH, num_epochs=1) 

 train_spec = tf.estimator.TrainSpec( 
     input_fn=train_input_fn, max_steps=_NUM_TRAIN_STEPS) 
 eval_spec =  tf.estimator.EvalSpec( 
         name="eval", 
         input_fn=eval_input_fn, 
         throttle_secs=15) 
 return (ranker, train_spec, eval_spec)



Train	and	evaluate	the	rankerTrain	and	evaluate	the	ranker
In [0]: ! rm -rf "/tmp/ranking_model_dir"  # Clean up the model directory. 

ranker, train_spec, eval_spec = train_and_eval_fn()
tf.estimator.train_and_evaluate(ranker, train_spec, eval_spec)

Finally,	let	us	evaluate	our	model	on	the	test	set.

In [0]: ranker.evaluate(input_fn=lambda: input_fn(_TEST_DATA_PATH, num_epochs=1))



Launch	TensorBoardLaunch	TensorBoard
In [0]: %load_ext tensorboard 

%tensorboard --logdir="/tmp/ranking_model_dir" --port 12345 

A	sample	tensorboard	output	is	shown	here,	with	the	ranking	metrics.




